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ABSTRACT
Empirical studies of strategic settings commonly model player in-

teractions under supposed game-theoretic equilibrium behavior, to

predict what rational agents might do. But in sufficiently complex

settings, analysts cannot solve for exact equilibria, and may resort

to solving a restricted game where agents are limited to a tractable

subset of strategies. This provides a solution, but one with unclear

strategic stability in the original game. We propose a search and

evaluation method that can guarantee a well-defined strategic sta-

bility property in the profile that it yields, even if only a small subset

of possible strategies in a game have been analyzed. The method

achieves this result by combining statistical confidence interval

estimation, a multiple test correction, and empirical game-theoretic

analysis. We also present an extension of the method that more

often finds genuine approximate equilibria, by using simulated an-

nealing instead of simple random search for strategy exploration.

We demonstrate efficacy in two example settings: the first-price

sealed-bid auction, and a cybersecurity game.
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1 INTRODUCTION
In studies of real-world environments with strategic agents, ana-

lysts often use game-theoretic equilibrium to predict outcomes of

agent interactions. Many games of interest are intractable to solve

exactly, due to factors like the large number of strategies and lack

of explicit payoff specification. Analysts may cope by considering

a restricted game, where agents are limited to a relatively small

enumerated set of strategies. Payoffs over these strategies can be

estimated by simulation, inducing a restricted game model that can

be solved for equilibrium. This approach has been applied to areas

including models of securities markets [23], social dilemmas [12],

space debris removal [10], and credit networks [4].

Such restricted-game studies are informative, but they leave

questions about the relevance of solutions found with respect to

the original, unrestricted game. In particular, there has been no way

to quantify the likelihood that restricted-game findings hold in the

original game, even approximately. Indeed, it is generally expected

that Nash equilibria found in the restricted games have beneficial

strategy deviations in the original game. It would be useful to have

some way to characterize stability of restricted-game solutions with

respect to the original game, for example in terms of the difficulty

of finding beneficial deviations.

We introduce an algorithm that searches for stable profiles in

simulation-based games. This algorithm guarantees that when it
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terminates successfully, there is high statistical confidence the strat-

egy profile returned is almost stable, meaning only a small measure

of other strategies can be beneficial deviations. In other words,

under a specified stochastic search, only a small fraction of trials

will yield beneficial deviations. We call this a probably almost stable
(PAS) guarantee. The degree of statistical confidence and acceptable

measure of beneficial deviations can be tuned as desired.

Our procedure uses iterated better-response search to find benefi-

cial deviations. Better-response dynamics, where players iteratively

add beneficial deviations to their strategy sets, has been shown to

converge to low-regret profiles in various game types [7, 21]. Our

procedure also incorporates a statistical confidence interval esti-

mation method for determining whether the current profile meets

the stability guarantee or further search is needed. The procedure

design is completed by a multiple-test correction for avoiding ex-

cessive false positives caused by the sequential-testing nature of

the algorithm. Optionally, one can use a black-box optimization

procedure like simulated annealing with our procedure to achieve

stronger guarantees on the difficulty of finding beneficial deviations,

at a cost of increased computation during strategy exploration.

Our contributions are twofold. First, we introduce the new PAS

stability concept, which quantifies the likelihood of missing preva-

lent opportunities for strategic improvement in game-theoretic

analysis. Second, we present a novel algorithm for generating strat-

egy profiles in large simulation-based games, that offers a provable

guarantee of this form of stability without requiring that most

strategies be examined. We give a formal definition of our probably

almost stable property and a simple proof of our algorithmic guar-

antee. We derive the time complexity of our algorithm, in terms of

the desired tightness of its statistical guarantee. We evaluate the

algorithm’s efficacy experimentally on two games: the first-price

sealed-bid auction (FPSB), and a cybersecurity game on an attack

graph [18]. We show that in both settings, our algorithm yields a

high frequency of true positives (i.e., PAS profiles found with high

ground-truth success probability), while controlling false positives

in accordance with the guarantee. When we incorporate simulated

annealing as an improved strategy search method, the frequency

of true positives increases dramatically.

2 RELATEDWORK
Our approach was inspired in part by work of Bopardikar et al. [2],

which defines a search algorithm for security policies in two-player,

zero-sum simultaneous games. That paper defines a security pol-

icy as a mixed strategy and associated payoff for player 1, such

that if player 2 plays the best response it finds during a limited

random search over deviating strategies, player 1 will obtain at

least the given payoff with high probability. We follow this work

in reasoning statistically from one player’s exploration to derive

probabilistic bounds on what the other player can find. However,

since we do not assume the game is zero-sum, we cannot (at least
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in this way) provide guarantees about security value. Rather, we

pursue a different probabilistic stability property.

Several works have studied sequential search procedures for

Nash equilibrium (NE) in games with many strategies. McMahan

et al. [15] introduced the double-oracle method, a procedure for

iteratively solving two-player, zero-sum games with large strategy

sets, using an oracle per agent that best-responds to the equilibrium

strategy of the opponent in the current restricted game. Sureka and

Wurman [21] combined best-response dynamics with a tabu list

to seek pure-strategy NE, for combinatorial auctions. Goldberg [7]

found theoretical convergence rates for a better-response dynam-

ics based on randomized local search in a load-balancing game.

Schvartzman and Wellman [20] used reinforcement learning to add

better-response strategies to a restricted game, finding an NE each

time before alternating back to reinforcement learning. Jordan et

al. [9] compared strategy exploration procedures in convergence

rate to low-regret profiles in the FPSB auction. Recently, Lanctot

et al. [11] proposed a generalized iterative method motivated by

advances in deep learning from self-play in games.

Our approach relies pivotally on a strategy exploration function,
which we use to model a player’s effort to find a beneficial devia-

tion from a specified strategy profile. All statistical guarantees are

relative to this strategy exploration function; a stronger exploration

method produces more credible evidence that a proposed strategy

profile is an approximate equilibrium. For this reason, we perform

experiments with two black-box optimization methods: the naive

method of simple random search over a bounded strategy space,

and simulated annealing, a classical stochastic search method that

provably converges to a global optimum with a sufficiently slow

annealing schedule. Recent works on black-box optimization have

suggested that more complex methods (e.g., Gaussian process ban-

dits) perform better in some problem settings, depending on the

number of samples allowed, but with varying results across differ-

ent problems [8]. We chose simulated annealing as our stronger

strategy exploration method, as it is well known, easy to imple-

ment, and sufficient to produce noticeably better results than simple

random search within our larger method.

3 PROBLEM SETTING
We present our methods for two-player games, with the suggestion

that the extension to n players is natural. Let G = (S,U ) be a

two-player general-sum normal-form game, with strategy sets S =
(S1, S2) and utility functions U = (U1,U2). Ui (s) assigns player i a
real-valued payoff for pure-strategy profile s ∈ S1 × S2.

G is a simulation-based game, meaning the agents have no direct

specification of U , but rather limited access to a payoff oracle O .
Upon query for a pure-strategy profile s , the oracle responds with
O(s) = (U1(s),U2(s)). The oracle may be said to simulate payoffs
from the game.

A mixed-strategy profile σ = (σ1,σ2) assigns each player a prob-

ability distribution over its strategy set. By definition, a mixed-

strategy profile σ is a Nash equilibrium of a two-player game, if and

only if for all i ∈ {1, 2}, si ∈ Si , Es−i∼σ−iUi (si , s−i ) ≤ Es∼σUi (s),
where s−i is a pure strategy of the other player, and σ−i ∈ ∆S−i is
the mixed strategy of the other player. More generally, we say that σ
is an E-Nash equilibrium, for E ≥ 0, if no player can gain more than

E by unilaterally deviating: Es−i∼σ−iUi (si , s−i ) ≤ Es∼σUi (s) + E.
We use the term E-beneficial deviation to mean any strategy that

yields an improved payoff of at least E, as a unilateral deviation

from a given reference profile.

We assume an efficient means of finding a mixed-strategy Nash

equilibrium (MSNE) in restricted games with sufficiently small strat-

egy sets—perhaps containing a few dozen strategies per agent. We

know by Nash’s theorem that some mixed-strategy Nash equilib-

riummust exist in any such game. Solvers implemented in packages

such as Gambit can find sample MSNE reliably and efficiently in

many practical problems [14].

Our methods are motivated by settings where the strategy sets

S1 and S2 are too large to explore exhaustively, possibly infinite.

We extract a restricted game G ′ from G, written as G ′ ⊂ G, by
restricting players to S ′ = (S ′

1
, S ′

2
), where S ′

1
⊆ S1 and S ′

2
⊆ S2.

We must similarly restrict the utility functionU ′ of G ′ to S ′, such
that U ′ yields the same result as U where their domains overlap. If

restricted gameG ′ has |S ′
1
| and |S ′

2
| sufficiently small, by assumption

it will be feasible to find some MSNE of G ′.
To model strategy exploration, we define a probability distri-

bution D1 over S1 and probability distribution D2 over S2. Each

distribution has full support, that is, for i ∈ {1, 2} and all s ∈ Si ,
Di (s) > 0. We assume that agents select strategies to evaluate by

sampling from these distributions in an i.i.d. manner. For example,

in this study, we perform experiments where Di is defined implic-

itly by either simple random search or simulated annealing, over

continuous strategy spaces.

4 PROBABLY ALMOST STABLE PROFILE
SEARCH

Suppose player 1 has found an E-MSNE, σ = (σ1,σ2), in a restricted

game G ′ ⊂ G. It is possible that player 2 might, through a limited

random search, find some strategy s ′
2
that player 1 has not con-

sidered, from G \G ′, such thatU2(σ1, s
′
2
) ≥ U2(σ ) + E—that is, an

E-beneficial deviation for player 2. We would like to be able to say

this is unlikely: that, if player 2 samples a pure strategy from distri-

bution D2, the probability of obtaining an E-beneficial deviation is

no greater than ϵ , with 0 < ϵ ≪ 1.

Definition 4.1. A strategy profile σ is ϵ-almost stable for player 1
with respect to D2 and E, if

Pr

(
U2(σ1, s

′
2
) > U2(σ ) + E

)
≤ ϵ , for s ′

2
∼ D2.

The almost-stability concept captures a bound on the measure

of beneficial deviations in the strategy space. Because our evidence

about the overall space of strategies comes exclusively from sam-

pling, the best that we can do is to show that profile σ is almost

stable with high probability, say at least (1 − δ ), with 0 < δ ≪ 1.

If a profile σ is accepted as almost stable by a statistical test that

has a false positive rate of at most δ for any input, we say that σ is

probably almost stable. Let p ≡ Pr(U2(σ1, s
′
2
) > U2(σ ) + E).

Definition 4.2. A strategy profile σ is probably ϵ-almost stable for
player 1 with respect to D2, E, and δ if it is accepted by a statistical

hypothesis test T , such that whenever p > ϵ ,

Pr

(
T (σ ) = accept

)
≤ δ ,

with respect to the randomness in the statistical test.
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Wemight like to model the opponent as drawingM i.i.d. samples

from D2, seeking a probably almost stable guarantee reflecting

the likelihood of any sample being an E-beneficial deviation. This

can be achieved by adjusting the deviation probability, as ϵ ←

1−(1−ϵ)1/M . However, such adjustment may dramatically increase

the number of samples required to establish the guarantee.

4.1 Using the Clopper-Pearson confidence
interval

The Clopper-Pearson confidence interval is a classical statistical

tool; the summary below (for the upper bound only) is based on

the original paper [5]. We use this method to derive a bound on

the probability of any sampled deviation being E-beneficial, based

on the observed frequency in a sample. The bound is conservative,

even when no successes are observed [1, 3].

Given a binomial random variable of unknown probability p, we
observe X successes in N trials. The Clopper-Pearson procedure,

given a desired confidence level δ ∈ (0, 1] and sample count N ,

provides an upper bound p̄δN (X ) on p, such that for any p ∈ (0, 1],

the risk of error (i.e., Pr(p̄δN (X ) < p)) is at most δ .

For the desired δ and sample count N , and for any p, let xδN (p)

be the greatest integer in {−1, . . . ,N − 1} such that Pr(X ≤ x
δ
N (p) |

p) ≤ δ . For any X ∈ {0, . . . ,N − 1}, let p̄δN (X ) be the least value

p′ ∈ [0, 1] such that x
δ
N (p
′) = X . Define p̄δN (N ) = 1. The Clopper-

Pearson upper bound on p is simply p̄δN (X ).
It has been shown [5] that given δ ∈ (0, 1] and N ≥ 1, for all

p ∈ [0, 1],

Pr

(
p̄δN (X ) < p

)
≤ δ . (1)

In our procedure, we select a sample count N as small as possi-

ble such that if no successes are observed in N trials, the Clopper-

Pearson upper bound, p̄δN (0), will be at most ϵ . As Thulin [22] notes,
in the case where X = 0 trials are successful, we can compute the

upper bound of the Clopper-Pearson interval as p̄δN (0) = 1 − δ1/N
.

Rewriting to solve for the required number of trials to guaran-

tee p̄δN (0) ≤ ϵ , we find:

N =

⌈
log(δ )

log(1 − ϵ)

⌉
. (2)

In case a lower false negative rate is desired (i.e., fewer almost-

stable profiles rejected), our procedure could be modified to select

N such that one or more successes are allowed in N trials, with the

general approach being otherwise unchanged.

4.2 Hypothesis test for probably almost stable
profiles

Here we present a straightforward hypothesis test for evaluating

whether a mixed-strategy profile σ = (σ1,σ2) is probably almost

stable for player 1 with given parameters. (To guarantee that neither

player is likely to find an E-beneficial deviation by sampling, we

could simply run Algorithm 1 with each player in turn as focal

agent.) If p > ϵ , (i.e., random draws are too likely to be E-beneficial

deviations), this test will reject profile σ with probability at least

(1 − δ ).

Algorithm 1 PAS-Single

Require: ϵ ∈ (0, 1),δ ∈ (0, 1),σ ∈ ∆S1
× ∆S ′

2

,D2 ∈ ∆S2
,U2 :

∆S1
× ∆S2

→ R, E ≥ 0

1: N ← arg minℓ∈{1, ... } : p̄δ
ℓ
(0) ≤ ϵ

2: for N trials do
3: Sample a player-2 pure strategy s2 ∼ D2

4: if U2(σ1, s2) > U2(σ ) + E then
5: return (reject, s2)

6: return (accept,⊥)

In presenting Algorithm 1 we use the notation p̄δ
ℓ
(X ) to mean

the upper bound on p where ℓ is the binomial sample count, and

δ the desired confidence level. We reject the hypothesis that pro-

file σ is probably almost stable if a single E-beneficial deviation is

found in N trials, and otherwise we accept. We also return the pure

strategy s2 that E-beneficially deviated, or ⊥ if none was found. By

noting that σ ∈ ∆S1
× ∆S ′

2

, we emphasize that in the input profile

player 2 plays only a small (finite) subset of its full strategy set with

positive probability.

Proposition 4.3. For input (ϵ,δ ,σ ,D2,U2, E), if Algorithm 1 re-
turns accept, then σ is probably ϵ-almost stable at confidence level δ
for distribution D2 and E.

Proof. Let T represent Algorithm 1. We want to show that

Pr(T (σ ) = accept | p > ϵ) ≤ δ . Consider any σ such that p > ϵ .
T (σ ) = accept only if the success count X = 0 in N trials. By

construction, p̄δN (0) ≤ ϵ . Thus, ifT (σ ) = accept andp > ϵ , p̄δN (X ) <

p. By the Clopper-Pearson bound (1), Pr(p̄δN (X ) < p) ≤ δ . □

Proposition 4.3 holds because the Clopper-Pearson estimator

limits the false positive rate of Algorithm 1 to δ , even if p ≈ ϵ . One
drawback of the estimator is that it produces a high false negative

rate when p ≈ ϵ . Specifically, the probability of a false negative

in Algorithm 1, when p ≤ ϵ , is 1 − (1 − p)N . This is simply the

probability that at least one sampled deviation will be E-beneficial.

In the worst case where p = ϵ , the false negative rate equals (1− δ ).
Since many profiles σ that should be accepted by Algorithm 1 have

p ≪ ϵ , the false negative rate is often much lower than (1 − δ ).

5 COMBINED BETTER-RESPONSE SEARCH
AND SEQUENTIAL HYPOTHESIS TEST

Algorithm 1 can evaluate whether a given profile σ is probably

almost stable. This can be employed within a broader method to

search for such a profile. Suppose Algorithm 1 returns (reject, s2)

for profile σ . We can append the pure strategy s2 that beneficially

deviates from σ to the old restricted strategy set S ′, to form enlarged

strategy set S ′′. Next, we query our payoff oracleO for the payoffs of

every new pure strategy profile in the enlarged restricted gameG ′′.
We can then use our game solver to find a MSNE σ ′′ ofG ′′. Finally,
we test profile σ ′′ to determine whether it is probably almost stable

in original game G.
If the new profile σ ′′ is found to be probably almost stable in

original gameG , we stop with a successful result. Otherwise, we add
the beneficially deviating pure strategy to the restricted strategy set
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and repeat, until either we succeed and stop, or some predetermined

number of iterations is reached and we fail.

Note that this procedure may invoke the statistical hypothe-

sis test many times. Thus in order to guarantee probably almost

stability at a given confidence level, we need to apply a multiple-

comparison adjustment to the level δ employed at each iteration of

Algorithm 1.

Algorithm 2 combines a better-response dynamics search for

stable profiles with a sequential hypothesis testing procedure that

accounts for multiple comparisons. We aim to limit the familywise

error rate (FWER) over all hypothesis tests in the sequence to a

given confidence level δ . This means that for any game G, initial
restricted strategy set S ′

2
, deviation probability ϵ , confidence level δ ,

equilibrium candidate σ , distribution D2, and deviation tolerance E,

the probability of returning (accept,σ ′), when the true probability

of beneficial deviation from σ ′ under D2, E, is greater than ϵ , is at
most δ .

Algorithm 2 PAS-Sequential

Require: ϵ ∈ (0, 1),δ ∈ (0, 1),σ ∈ ∆S1
× ∆S ′

2

,D2 ∈ ∆S2
,U : ∆S1

×

∆S2
→ R2, E ≥ 0,K ∈ {1, . . . }, ®α ∈ RK+ :

∑
αk = δ , S ′

2
⊂ S2

1: σ ′ ← σ , the current restricted-game MSNE

2: for iteration k ∈ {1, . . . ,K} do
3: Nk ← arg minℓ∈{1, ... } : p̄

αk
ℓ
(0) ≤ ϵ

4: s ← ⊥, the E-beneficial deviation
5: for Nk trials do
6: Sample a player-2 pure strategy s2 ∼ D2

7: if U2(σ
′
1
, s2) > U2(σ

′) + E then
8: s ← s2

9: break
10: if s = ⊥ then
11: return (accept,σ ′)
12: else
13: S ′

2
← S ′

2
∪ {s}

14: σ ′ ← solve(S1, S
′
2
,U ), an MSNE for the new player-2

strategy set

15: return (reject, s)

Note that function solve(S1, S
′
2
,U ) in Algorithm 2 returns any

MSNE of the restricted game on strategy set (S1, S
′
2
).

Algorithm 2 uses a Bonferroni correction for multiple compar-

isons testing, to cap the familywise error rate at δ .K is themaximum

number of strategy exploration rounds to perform. ®α ∈ RK+ is an α-
spending vector, indicating the confidence level to be used in each

iteration, where the confidence levels sum to δ . By the union bound,

we know that if the probability of a false positive in each round k is

at most αk , the probability of any false positive is at most

∑
αk = δ .

Therefore, because Algorithm 1 guarantees probably almost stable

profiles when it returns accept, it follows that Algorithm 2 does as

well. Algorithm 2 can make this further guarantee, compared to

the single-round Algorithm 1, because in any round k it requires a

larger number of tests Nk to guarantee p̄
αk
Nk
(0) ≤ ϵ .

Proposition 5.1. For any input (ϵ,δ ,σ ,D2,U , E,K , ®α , S
′
2
), if Al-

gorithm 2 returns (accept,σ ′), σ ′ is probably ϵ-almost stable at con-
fidence level δ for distribution D2 and E.

Proof. For each of up to K rounds of Algorithm 2, let Rk (σk ) ∈

{accept , reject} be the result of round k , on current profile σk .

For any profile σ ′′, let Pr(Rk (σ ′′) = accept) be the acceptance

probability of the test in Algorithm 2 for round k , given αk . For any
profile σ ′′, let p(σ ′′) equal the E-beneficial deviation probability

under distributionD2. Let us define hypothesis testT (σ
′′) as the test

that, for any profile σ ′′, returns accept if any round k of Algorithm 2

returns (accept,σ ′′), and reject otherwise.
We want to show that for any profile σ ′′, Pr(T (σ ′′) = accept |

p(σ ′′) > ϵ) ≤ δ .
By the union bound,

Pr

(
T (σ ′′) = accept

)
≤

K∑
k=1

Pr

(
Rk (σ ′′) = accept

)
.

By construction, in each round k of Algorithm 2, for any profile σ ′′,

if p(σ ′′) > ϵ , then Pr(Rk (σ ′′) = accept) ≤ αk . This is because each
round of Algorithm 2 essentially implements Algorithm 1 with

measure tolerance ϵ and confidence level αk . Thus, by the union

bound, if p(σ ′′) > ϵ , Pr(T (σ ′′) = accept) ≤
∑K
k=1

αk = δ . □

Corollary 5.2. The probability that Algorithm 2 returns any
tuple (accept,σ ′) such that p(σ ′) > ϵ is at most δ .

5.1 Asymptotic cost of Algorithm 1
The order of growth of time and space required by Algorithm 1

is modest. The algorithm takes inputs ϵ , the allowed deviation

probability, and δ , the confidence level; the algorithm’s runtime

can be represented by N , the worst-case sample count. The space

complexity of Algorithm 1 is constant, because the algorithmmerely

needs to track the expected payoff of the best deviation found so

far and how many deviations have been sampled.

The time complexity can be conveniently expressed as a function

of
1

ϵ , the expected samples per E-beneficial deviation, and 1

δ , the

expected trials before a false positive. Algorithm 1 has runtime N
that is O( 1ϵ ) and O(log

1

δ ). The bound for
1

δ is trivial, based on (2).

We can derive the bound for
1

ϵ by letting y = 1

ϵ and noting that

an upper bound on N is proportional to f (y) = −(log
y−1

y )
−1
; we

then take the derivative of f with respect to y, and show that its

limit is 1 as y approaches infinity. This shows that N grows with

y proportionally to a linear function in the limit. Thus, the order

of growth in the strategy count N that the analyst must sample is

proportionate to the desired bound on the number of samples an

agent is expected to require to find an E-beneficial deviation, 1

ϵ .

For a numerical example, with ϵ = 0.01 and δ = 0.1, N = 230

samples are needed in the worst case. If instead ϵ = 10
−5
, N =

230,258 samples would be needed. Note that
N
ϵ is roughly constant

for a given δ , so the analyst’s computational needs scale evenly

with the agent’s power to explore.

5.2 Asymptotic cost of Algorithm 2
The worst-case time required to run Algorithm 2 is N × K , where
N is the maximum sample count per round, and K is the maximum

round count. The time complexity of Algorithm 2, like that of

Algorithm 1, is O( 1ϵ ) and O(log
1

δ ). Moreover, the time complexity

N × K is O(K logK) with respect to the round count. To see this,

observe that there is anO(K) factor due to the K term in N ×K and
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an O(logK) factor due to the division of δ by K in (2) for finding

N , when we divide the δ budget into K equal parts for the various

rounds.

For instance, if ϵ = 0.01, δ = 0.1, and K = 3, Algorithm 2

requires N × K = 1,017 samples in the worst case. Even if K were

set as high as 1,000, the worst-case sample count would be 917,000;

with this many strategies, the bottleneck would likely be the Nash

equilibrium solver, not in the search process itself. The sample

complexity N × K grows proportionally to
1

ϵ .

6 EXPERIMENTS
We perform experiments on two classes of two-player, general-sum,

normal form games from the game theory literature. We study

the first-price sealed-bid auction (FPSB) and a cybersecurity game

played on an attack graph, from recent literature [17]. In the FPSB

game, we consider a parameterized strategy, where players bid a

constant fraction of their value for the item being sold. This strategy

family includes equilibria of the full game, and has been adopted

for analytical convenience in prior work on FPSB auctions [6, 19].

Each experiment begins with a restricted strategy set.We execute

single-pass Algorithm 1 or sequential Algorithm 2, and analyze the

results based on frequency of true and false positives, as well as ac-

ceptance rate conditional on true beneficial deviation probability p
(as estimated via sampling). We also repeat the sequential experi-

ments with both strategy exploration methods under consideration:

simple random search and simulated annealing.

We aim to test whether the Algorithms 1 and 2 empirically satisfy

their theoretical guarantees, even for values of p ≈ ϵ . In addition,

we aim to evaluate whether the frequency of true positives is rea-

sonably high, such that the algorithms are likely to be useful for

finding stable profiles, instead of rejecting almost all profiles due

to excessive conservatism. Our results also demonstrate the per-

formance of our algorithms when a relatively sophisticated search

process is used to seek beneficial deviating strategies.

6.1 First-price sealed-bid auction game
In the two-player FPSB auction game, one item is auctioned to the

higher bidder of player 1 and player 2, and the winner pays its

bid. Our version of the game allows each player i to choose a bid
fraction ci ∈ [0, 1] (before learning the player’s value for the item).

Each player is then assigned a private value vi for the item, drawn

i.i.d. fromU (0, 1), and bids civi . The higher bidder wins the item,

earning utility vi (1 − ci ); the other player earns zero utility.

The unique Nash equilibrium in 2-player FPSB is for player i to
play the pure strategy ci =

1

2
[6, 9]. In a restricted version of the

FPSB auction game, allowing only a finite set of bid factors S ′ =
{c1, . . . , cq }, the equilibrium solution is less simple. In fact, c = 1

2

is not necessarily a beneficial deviation from a Nash equilibrium of

such a restricted game. This leads to interesting complications in

the iterated better-response dynamics of such restricted games.

Some known properties of the FPSB auction game facilitate our

analysis. Suppose that player 2 plays pure strategy c2, and we

want to evaluate the expected payoff for player 1 of playing pure

strategy c1. This utility is given by:

Ev1,v2∼U (0,1)(U1(c1, c2)) =


0 if c1 = 0

1−c1

2
else if c2 = 0

(1−c1)c1

3c2

else if c1 ≤ c2

(1 − c1)
3c2

1
−c2

2

6c2

1

otherwise.

(3)

Using (3), we can determine whether c1 is a beneficial deviation

from any finite mixed strategy for player 2. Moreover, we can

immediately give a minimal example of a restricted game where c =
1

2
is not a beneficial deviation. Consider the restricted game where

the only legal strategy is ca =
1

3
; in the unique Nash equilibrium,

the expected payoff is
2

9
= 24

108
. A player deviating to play cb =

1

2

would receive expected payoff
23

108
, which is lower.

For our experiments on the FPSB auction, we begin each re-

stricted game with a shared set S ′ of 10 pure strategies c available
for the players, selected i.i.d. fromU (0, 1). We use (3) to build the

payoff matrix for all pairs of pure strategies in S ′. Then we use

Gambit’s implementation of the extreme points method [13] to find

MSNEs of the resulting game, and select uniformly among them to

set σ ′ for the next iteration of Algorithm 2.

6.2 Cybersecurity game
We also examine an attack-graph cybersecurity game from a re-

cent study [17]. In brief, the game represents an adversarial but

not zero-sum interaction between an attacker and a defender, mod-

eled using Bayesian attack graphs [16]. The defender agent in our

experiments varies along three parameters, adjusting how many

nodes are typically defended, and how randomly or greedily to

act. The game is simulation-based, meaning that profile payoffs

are estimated by sampling the results of a simulator. This game

serves as a realistic application domain for the PAS algorithms, as

it is a simulation-based game where it is costly to obtain payoff

samples, and there is no known, efficient method of finding exact

Nash equilibria in the unrestricted strategy space.

6.3 Simulated annealing
In some experiments, we use the classical method of simulated

annealing as an improved alternative to simple random search for

strategy exploration. Here we briefly describe how our implemen-

tation of simulated annealing is configured.

We model the strategy space for the deviating agent as S ′
2
∈

[0, 1]d , where d = 1 for FPSB and d = 3 for the cybersecurity

game. (Strategy vectors in this space can be mapped to and from

the original strategy space S2.) We decide on a round count κ of

strategies to examine in each run of simulated annealing, using

κ = 50 for FPSB, and due to computational limitations, κ = 5 in the

cybersecurity game.

Each run of simulated annealing begins with an i.i.d. random

sample over S ′
2
, in our experiments a uniform random sample; it

also has an i.i.d. random seed. From there, we employ a truncated

Gaussian as our distribution for sampling a neighbor of the cur-

rent strategy vector. That is, for each dimension in d , we use an
independent Gaussian draw centered on the current strategy value,

with some given variance, using rejection sampling to ensure the

result is in [0, 1]. We use a variance of 0.003 for the FPSB game,



GAIW, accepted, 2019 Mason Wright and Michael P. Wellman

0.03 for the cybersecurity game. (We round all randomly generated

strategy vectors to 6 decimal places.)

For the temperature schedule, we anneal the temperature τ lin-

early over the number of samples analyzed so far, from a maximum

of 1.0 in FPSB or 15.0 in the cybersecurity game, to zero. At each

step, we update the current strategy vector to the new one being

analyzed, if: (a) the new strategy has higher expected payoff, or

(b) with probability exp((u ′ − u)/τ ), where u ′ is the new strategy’s

expected payoff, and u is the current strategy’s expected payoff. We

return the parameters that yield the highest expected payoff, not

necessarily the final parameters settled on by the search process.

7 RESULTS
7.1 FPSB auction
We consider the FPSB auction with 10 randomly generated initial

strategies, maximum deviation probability allowed ϵ = 0.05, and

FWER δ = 0.1. We begin by considering the special case where

E = 0, so any payoff improvement is sufficient for an E-beneficial

deviation. Over these FPSB games, the mean probability of a sam-

pled strategy being a beneficial deviation from the initial MSNE

was 10.4%, with a median of 7.4%. Therefore, in the majority of

these FPSB games, the initial restricted game’s MSNE is not almost

stable, where ϵ = 0.05; more strategies would have to be added to

the restricted game to produce an almost-stable profile.

We used a high value of ϵ = 0.05 in the experiments that empiri-

cally validate our algorithm’s accuracy, because a higher ϵ is more

economical, and the value of ϵ should not affect our algorithm’s

correctness. But we reiterate that the runtime of Algorithm 2 grows

only linearly in
1

ϵ , such that even if we had used ϵ = 10
−4
, for

example, our experiments would remain computationally feasible.

Moreover, we used a low value of K = 3 because this is appeared to

be the lowest K that would clearly show the need for multiple-tests

correction, and a higher K would not yield dramatically more con-

vincing results. The sample count N × K required by Algorithm 2

grows as O(K logK), so a larger iteration limit like K = 10 would

be easily manageable. (Indeed, we also conducted a follow-up ex-

periment with ϵ = 0.0005 and K = 12.)

As shown in Figure 1, the empirical accept rate of Algorithm 1 is

less than δ for all true beneficial deviation probabilities p > ϵ . This
is the guarantee we ensure when we certify profiles as probably

almost stable. The plot is based on 400 randomly-generated FPSB

games, for which the PAS-single algorithm was run 100 times per

game. Overall, the PAS-single algorithm accepted a profile as stable

in 13.7% of cases, with frequencies as follows: true positive 12.6%,

true negative 64.9%, false positive 1.1%, false negative 21.4%. All of

our results are summarized in Table 1.

Next, we demonstrate the necessity of controlling for multiple

comparisons. We show what happens if we run the sequential

Algorithm 2 with a maximum ofK = 3 iterations, on the same FPSB

game, but without adjusting theα used per iteration by a factor of
1

K
relative to the value what would be used in single-pass Algorithm 1.

Specifically, we let αi = δ for all rounds, essentially repeating the

single-pass Algorithm 1 up to 3 times. Figure 2 (left) shows that

when the true beneficial deviation probability p is slightly greater

than ϵ , this sequential procedure will incorrectly accept the profile

as almost stable, more than δ fraction of the time. Therefore, the
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Figure 1: Accept rate in FPSB of Algorithm 1 vs. probabilityp
of beneficial deviation. Horizontal line is δ = 0.1, vertical
line ϵ = 0.05. Accept rate is below δ for all p > ϵ .

procedure fails to guarantee probably almost stable results when

it accepts. This procedure achieves a false positive rate of 3.5%,

which is below δ . But for p ≈ ϵ , the procedure fails to guarantee an
acceptably low false positive rate.

Finally, we showAlgorithm 2with

∑
αi = δ corrects the multiple

comparisons problem. Again, we run sequential Algorithm 2 for up

to K = 3 iterations, but with αi =
δ
3
in each round. Figure 2 (right)

shows when the true beneficial deviation probability p is greater

than ϵ , the accept probability is less than δ , meaning the proba-

bly almost stable guarantee is satisfied when Algorithm 2 accepts.

The PAS-sequential procedure accepts a profile as almost stable in

40.0% of trials, much better than the 13.7% that was achieved by

PAS-single with the same ϵ and δ values. Overall, PAS-sequential

produces these frequencies: true positive 39.1%, true negative 24.0%,

false positive 0.8%, false negative 36.1%. (These rates are computed

over only the final iteration’s profile from each trial, not including

the profiles from earlier iterations within a trial.) On average, PAS-

sequential terminated after 2.3 of a possible 3 iterations of strategy

search, using a median of 3 iterations.

Notice PAS-sequential is more successful at finding a stable

profile than PAS-single: PAS-single yields a frequency of posi-

tives of only 13.7%, while the 3-round version of PAS-sequential

yields 39.1%. This may be because, as previously mentioned, better-

response dynamics tends to produce increasingly stable profiles.

Figure 3 shows that the probability of finding a beneficial de-

viation from the current restricted-game MSNE σ empirically de-

creases in each round of Algorithm 2. In a typical run, the initial

strategy set does not yield an almost-stable MSNE at ϵ = 0.05. With

each round of the algorithm, however, the distribution of beneficial

deviation probabilities shifts to the left, as desired.

To show that Algorithm 2 is feasible with much lower ϵ and

higher K , we ran a follow-up experiment with ϵ = 0.0005, K =
12, and other settings as before. Over 400 trials, we achieved the

following frequencies: true positive 38.5%, true negative 18.7%,

false positive 0.0%, false negative 42.8%. The mean rounds before

termination was 10.91, of a maximum 12 possible.

Figure 4 shows the acceptance rate of Algorithm 2 as a function of

the true beneficial deviation probabilityp, when ϵ = 0.0005, δ = 0.1,
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Figure 2: Accept rate in FPSB of Algorithm 2 vs. probability p of finding a beneficial deviation, with up to K = 3 rounds. Left:
without multiple comparisons control (αi = δ ). Right: with control (αi = δ

3
). Horizontal line is δ = 0.1; vertical line ϵ = 0.05.
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Figure 3: Empirical distribution in FPSB of deviation prob-
ability; random strategies ∼ D2 = U (0, 1), vs. MSNE after K
rounds of Algorithm 2. Histogram shows Round 0.
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Figure 4: Accept rate in FPSB of Algorithm 2 vs. probabilityp
of finding a beneficial deviation, where αi = δ

12
for up to K =

12 rounds. Horizontal line is δ = 0.1; vertical line ϵ = 0.0005.
X-axis has log scale.

E = 0.0, and K = 12. Observe that, as desired, for p > 0.0005, the

acceptance rate is below 0.1. The figure is based on 400 trials.

This experiment took considerably longer to complete than the

others, due to the larger number of candidate deviations to evaluate

per round, and due to the more challenging equilibrium-finding

problems, with their many similar pure strategies.

7.1.1 FPSB with simulated annealing. Here we present results
for the FPSB auction, when simulated annealing over κ = 50 steps

is used instead of simple random search as the strategy exploration

method. In this experiment, we use a similar configuration to the

above, with 10 strategies initially available, ϵ = 0.05, and δ = 0.1.

Because simulated annealing is much better at finding beneficial

deviations than simple random search, we increased the maximum

strategies added, K , to 4. We also used a nonzero E of 0.0001.

Over 400 sampled games with different, randomly-generated

initial strategy sets, our procedure returned an accept result (i.e.,
a supposedly stable profile) in 382 cases, or with frequency 0.955.

To evaluate the ground-truth likelihood that simulated annealing

would find an E-beneficial deviation from each returned profile,

we ran 200 independent trials of simulated annealing. In every

trial, the follow-up test frequency of finding E-beneficial deviations

was below δ for positive results and above δ for negative results,

yielding a frequencies of true positives of 95.5% and frequency of

true negatives of 4.5%. These results demonstrate that in a simple

domain like the two-player FPSB auction, our iterated profile search

method combined with simulated annealing can perform remark-

ably well. (Note that the reasons for the nearly-ideal performance

include the positive E tolerance, interacting with the smooth payoff

function of the FPSB game, and the rounding of sampled strategies

to 6 decimal places.)

7.2 Cybersecurity game
In the cybersecurity game with simple random strategy search, we

begin with a fixed set of 10 strategies for the attacker and 12 for

the defender. The attacker plays a mixture over this strategy set,

while the defender explores randomly sampled alternative strate-

gies. The defender’s distribution D2 may be viewed as sampling
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ϵ K TP TN FP FN

FPSB/Alg. 1/rand. 0.05 - 12.6% 64.9% 1.1% 21.4%

FPSB/Alg. 2/rand. 0.05 3 39.1% 24.0% 0.8% 36.1%

FPSB/Alg. 2/rand. 5e-4 12 38.5% 18.7% 0.0% 42.8%

FPSB/Alg. 2/s. a. 0.05 4 95.5% 4.5% 0.0% 0.0%

Cyber./Alg. 2/rand. 0.05 3 26.0% 23.4% 1.0% 49.6%

Cyber./Alg. 2/s. a. 0.05 10 93.0% 1.0% 0.0% 6.0%

Table 1: Resulting frequencies of True Positive, True Nega-
tive, False Positive, and False Negative.
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Figure 5: Accept rate in cybersecurity game of Alg. 2 vs. true
probability p of finding a beneficial deviation, where αi = δ

3

for up to K = 3 rounds. Horizontal line is δ = 0.1; vertical
line ϵ = 0.05. As desired, accept rate is below δ for p > ϵ .

parameterizations (a,b, c) ∈ R3
for a heuristic strategy that takes

3 parameters, where each parameter is drawn i.i.d. from U (0, 1).
We verified empirically that under the initial strategy set, the ben-

eficial deviation probability is greater than ϵ = 0.05, so the initial

restricted game’s MSNE is not almost stable. As before, we use

δ = 0.1. We begin again with the special case where E = 0, so all

payoff improvements count as E-beneficial deviations.

Figure 5 shows the accept rate of Algorithm 2 versus an estimate

of the true beneficial deviation probability in the cybersecurity

game. Here we estimate the true beneficial deviation probability

for the final profile σ when Algorithm 2 terminates by sampling

400 deviations from D2 and finding the sample mean payoff of

each deviation over 250 simulations. We collected data from 700

independent runs of Algorithm 2, requiring about 400 hours of

computation time, the majority of which was used to estimate the

true beneficial deviation probability of each terminal profile σ .
Note that as shown in Figure 5, for all p > ϵ , Algorithm 2 pro-

duces an acceptance rate less than δ , as desired. The figure shows a
less smooth curve than for FPSB, with an acceptance rate withp ≈ ϵ
markedly below δ , perhaps because our estimation procedure for p
did not obtain enough samples to generate accurate estimates of the

true beneficial deviation probability. It may be that the Bonferroni

correction is too conservative in this setting, which is likely if the

hypothesis tests’ ground-truth results are positively correlated. In

the cybersecurity game, Algorithm 2 yields frequencies of true pos-

itive 26.0%, true negative 23.4%, false positive 1.0%, false negative

49.6%. Algorithm 2 terminated after a mean 2.89, median 3 rounds,

of up to 3 possible.

7.2.1 Cybersecurity game with simulated annealing. In the cy-

bersecurity game, we test simulated annealing of κ = 5 steps as the

strategy exploration method. The experiments begin with a set of

eight attacker strategies and 50 defender strategies. As before, we

set ϵ = 0.05 and δ = 0.1. We use maximum round count K = 10.

Due to computational constraints, we reduce the sample count for

each payoff estimate to 100, and sample only 100 strategy deviations

via simulated annealing to estimate the ground-truth probability of

beneficial deviation. To reduce the occurrence of spurious devia-

tions being found, due to the lower sample count used for payoff

estimation, we increase the E threshold to 1.3 in this experiment.

Each run of the experiment consumed between 40 and 120 hours on

one Intel Xeon CPU, depending on the number of rounds required.

We performed 97 runs of Algorithm 2 in the cybersecurity set-

ting with simulated annealing. The mean number of stages before

convergence was 4.4 out of the maximum 10. The fraction of runs

that returned accept was 0.93. All accepting runs appear to be true

positives, with a mean estimated ground-truth success probability

of 0.009. However, 0.06 fraction of all results were false negatives,

and 0.01 were true negatives. (One reject run failed to terminate

properly and is excluded from results.) More encouragingly, the

mean estimated ground-truth success probability of runs that re-

turned reject was 0.037, much higher than for the runs that returned

accept. Similarly to the FPSB environment, we observe that using a

stronger strategy exploration distribution, instead of simple random

search, leads to more true positives for Algorithm 2.

8 DISCUSSION
We introduced a strategic stability property called probably almost
stable, and showed it can be efficiently verified in large simulation-

based games. We presented a hypothesis test for the property and

a sequential search method for probably almost stable profiles. We

empirically demonstrated the efficacy of our new techniques in the

FPSB auction and a cybersecurity game, and we showed how the

frequency of true positives can be improved by using simulated

annealing as the strategy search method.

We stated the probably almost stable guarantee from the per-

spective of player 1 in a two-player game, but the concept can be

easily extended to n-player games, or to considering all players’

deviation probabilities simultaneously.

The probably almost stable concept and associated algorithms

provide a general statistical approach to quantify confidence in

simulation-based game-theoretic results.

Our probably almost stable concept does not provide any bound

on the regret of a profile σ , which is the maximum any agent could

gain by deviating unilaterally from σ . This limitation is unavoidable

by methods that sample payoffs for only a subset of strategies,

however, because there could exist a strategy not yet sampled with

arbitrarily high payoff for an agent i .
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