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ABSTRACT
Combining reinforcement learning (RL) with mechanism design

(MD) holds the potential for efficient optimisation of mechanisms

within online ad auctions, smart grid pricing and automated tolling

among others. However, current attempts to integrate RL with MD

have failed to produce scalable methods that are both sample effi-

cient and, incorporate strategic reasoning among agents. Existing

methods require incorporating equilibrium solutions to the agents’

decision problem before a mechanism choice can be evaluated. Fur-

thermore, optimisation programs with equilibrium constraints are

generally intractable. To this end, we introduce a powerful method

that combines stochastic optimisation and RL within MD to effi-

ciently compute optimal, incentive compatible (IC) mechanisms.

This combined framework exploits previously seen mechanisms to

guide exploration of mechanism parameters leading to a highly sam-

ple efficient approach which speeds up optimisation. Our method

incorporates a model that uses computerised learning agents to

simulate equilibrium response to the mechanism parameters which

in turn, are updated. This, as we show, guarantees convergence

to incentive-compatible mechanisms. In contrast to classical MD

which agents are assumed to perform optimal decision-making,

we embed cognitive constraints faced by real-world agents using

information-theoretic principles. We prove theoretical results that

give convergence guarantees and demonstrate the method in an

experiment drawn from a multi-agent coordination problem.

1 INTRODUCTION
Mechanism design (MD) is a mathematical formalism which studies

how to induce desirable outcomes in systems with self-interested

agents who are privately informed about their own preferences

[17]. Over the past decade there has been a surge in interest in un-

derstanding how to construct mechanisms that maximise revenue

in auction-based settings. Driving this increase is the application of

MD to optimise sponsored search auctions which enable (online)

platforms (e.g. Facebook, Baidu) to monetise advertising space [8].

The role of the mechanism, which takes the form of an auction,

is to allocate the impressions for the site to advertisers that pay

for the advertising space. Such mechanisms are capable of being

applied to compute pricing in smart grids [21] and ride-sharing in

Uber-like scenarios [7].
We propose a sample efficient technique that converges optimal

mechanisms in unknown environments. We tackle dynamic MD

so that the mechanism designer and agents are faced with future

uncertainty and in which information about the agents’ preferences

and/or environment changes over time [19]. Our framework there-

fore captures problems in which agents can acquire knowledge of

their preferences through repeated interactions (learning-by-doing)

and dynamic settings in which preferences change after interac-

tions with the mechanism for example, an agent’s demand for a

good changing after a sequence of purchases. This permits appli-

cation to a broad range of problems with complex and unknown

reward functions.

Using reinforcement learning (RL), our framework learns amodel

of agent behaviour in response to a chosen mechanism, the mech-

anism parameters are then updated concurrently which, as our

theory demonstrates, converges to an optimal mechanism. In our

framework the mechanism designer (M) makes adjustments to a

space of of mechanisms in a simulated environment. Concurrently,
the set of adaptive agents learn optimal best-response policies for

the chosen mechanism. The simulated feedback avoids the need

for costly acquisition of data from real-world environments but

however ensures the generated agent behaviour is consistent with

real-world outcomes. In our framework,M need not have a priori
knowledge of its reward function but can simply observe its realised

rewards after its decisions.
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Designing mechanisms that maximise some objective
2
within

unknown environments is currently a formidable challenge. In gen-

eral the MD problem is NP hard [5]. A notable example is revenue

maximisation in auctions - in settings such as online ad-auctions,

bidders’ valuations are typically drawn from a set of unknown dis-

tributions. Moreover, bidders may not know their own valuations

up-front but may learn them only after repeated participation. Find-

ing optimal mechanisms in these settings requires tuning numerous

parameters to achieve optimal outcomes which ensure that agents

are appropriately incentivised to participate (IR) and, that agents

truthfully announce their preferences.

Additionally, finding an optimal mechanism requires imputing

agents’ (equilibrium) behaviour in response to a givenmechanism to

determine the mechanism performance. Consequently, determining

optimal mechanisms in a sample efficient way is a pivotal challenge.

This need is deepened when costs such as menu costs or the cost
of evaluating many mechanisms in real-world scenarios are taken

into account.

We show that by combining methods from stochastic approxi-

mation with RL, we can construct a sample efficient technique that

produces fast convergence to an optimal mechanism for which IR

and IC conditions are satisfied in unknown environments. A cen-

tral result of the paper shows that modifications to the mechanism

(performed byM) produce a continuous family of mechanism out-

comes. This is a crucial property that permits stochastic optimisation
methods to find the optimal mechanism parameters. This leads to a

sample efficient approach which converges rapidly to the solution.

1
The effect of changes to the mechanism on the outcome is also a priori unknown to

M.

2
As in [10] we use the term optimal mechanisms to define a mechanism that maximises

any given objective.



Using RL, we then show that the set of adaptive agents converge

to equilibrium policies which, as we show, provides convergence

guarantees for both incentive compatible and individual rational

mechanisms using our method.

To accurately model decision-making in real-world scenarios,

using information-theoretic principles we for the first time, incorpo-

rate into the MD problem computational and cognitive limitations

facing real-word agents. This departs from classical MD and allows

us to accurately simulate the behaviour of real-world agents.

BACKGROUND
In classical MD, it is assumed that agents are fully rational, face no

computational constraints and have perfect knowledge of their indi-

vidual preferences and environment up-front. It is also assumed that

agents’ preferences and the information available to them do not

change over time. Under these assumptions the celebrated Vickrey-

Clarke-Groves (VCG) mechanism ensures constraints known as

incentive compatibility (IC) and individual rationality (IR) [25] — IC

ensures rational agents truthfully reveal their private information

to the mechanism (e.g. bidders reveal their valuations to an auction-

eer). IR ensures agents are suitably incentivised to participate (i.e.

receive net positive returns in expectation). are satisfied. However,

in many practical applications, the idealisations of classical MD are

often violated, an example is the case when agents act in dynamic

environments with changing information about their preferences.

In these environments, the prescribed solutions of classical MD are

rendered suboptimal [4].

Optimal MD and algorithmic MD seek to find the choice of mech-

anism that maximises some predefined mechanism objective [17].

Each of these problems has a bilevel optimisation structure in which

given some choice of mechanism, the agents each choose a policy

that maximises their given objective, given the chosen mechanism.

M then optimises over some parameterised set of mechanisms. It is

well known that for such problems, analytic solutions are notori-

ously difficult to obtain.

Learning methods tackling MD in unknown environments re-

quire acquiring performance feedback from agents in response to a

mechanism choice. This is obtained either through direct interac-

tion with real-world agents or by simulating the agents’ responses

for each choice of mechanism. Agents are therefore tasked with

finding solutions to a decision problem, the outcomes of which are

affected by the decisions of other agents. Consequently, generating

a data point of the MD problem requires solving a decision prob-

lem (e.g. Markov game). In the absence of a relationship between

the performance of each mechanism, current algorithmic methods

require pointwise-evaluation of each mechanism to determine the

optimal parameter. This leads to poor sample efficiency and slow

convergence.

In [4], it is assumed that agents employ a type of no-regret learn-
ing, in which each agent’s objective is to minimise its long-term

regret. In addition to omitting the strategic reasoning by agents, con-

straints such as IR are neglected. In these models, the non-strategic

aspect simplifies the analysis since the problem facing the agents is

not strategic. However, with this idealisation, vital features of the

problem such as coordination and in the influence of other bidders

in auctions are neglected.

Recently, RL methods have been adopted to tackle the problem of

optimal MD. In particular, reinforcement MD (RMD) applies learning

algorithms drawn from RL to systematically compute mechanism

parameters. These approaches have several deficiencies which ren-

der the solutions impracticable in various settings. RMD approaches

such as [23] use responses generated by real-world agents to a

choice of mechanism to evaluate the performance of a selected

mechanism. This generates valuable data that describes the actual
agents’ response to a selected mechanism. This requires a costly

collection of data from large numbers of mechanisms that have

been implemented in real-world settings. Moreover, this approach

does not ensure strategy-proofness - robustness against strategic rea-
soning by the agents and/or collusive behaviour. Therefore, agents

may communicate false statements about their preferences to the

mechanism.

A central challenge facing RMD is to produce methods that make

use of data generated by previous actions to extract information

about the performance of mechanisms with similar parameters

[24]. This feature is crucial for data efficient exploration of mecha-

nism parameters. We address this challenge in the paper with an

alternative approach that is data efficient and fast to converge.

Contributions
We introduce a data-efficient approach that enables M to de-

sign an optimal mechanism from simulated strategic equilibrium
responses from a set of agents. We also address a number of limita-

tions of existing methods:

1. Computational efficiency. Our approach leads to a vast in-

crease in convergence speed by allowing concurrent updates of

both the agents’ policies and the mechanism parameters. In particu-

lar, we use a two timescales method of stochastic approximation [2]

to adjust mechanism parameters whilst updating the agents’ polices

that determine their announcements for a given mechanism.

2. Strategic behaviour. Our method uses a strategic formulation

in which agents reason about other agents in their environment.

To account for cognitive constraints, we introduce a form of BR

derived from information-theoretic principles. By including an IR

constraint directly to the agents’ game, we construct mechanisms

in which IR constraints are respected.

3. Sample efficiency. Central to our method is a result that demon-

strates continuity in the mechanism outcome w.r.t. changes in the

MD specification. This enables data generated by exploratory ac-

tions to be exploited, yielding an optimisation method that is highly

data efficient.

Outline: First, we provide a formal description of the problem and

extend the setting to include bounded rationality. We then prove

the main theoretical results which are followed by an experimental

section in which we demonstrate the application to decentralised

systems with local rewards.

2 PRELIMINARIES
The system is comprised of self-interested agents that are each

endowed with private information. The agents jointly make in-

dividual announcements to a mechanism over a series of rounds.

After making their announcements, the agents then immediately

receive an allocation and a payment (which constitute an outcome)
which is determined by the mechanism. The dependence of the
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outcome on the agents’ joint announcement results in a game being

played by the agents. Formally, let N≜ {1, 2, . . . ,N } denote a set

of agents for some N ∈ N. At each time t ≤ T where T ∈ N ∪ {∞},

the global state st ∈ S = X × Θ is defined by st = (si,t )i ∈Nwhere

si,t = (xi,t ,θi,t ) ∈ Si , where xi,t ∈ X ⊂ Rp for some p ∈ N is an

allocation bequeathed to each agent i ∈ N and θi,t ∈ Θ ⊂ Rq for

q ∈ N is the type for agent i at time t . The state space is S = ×Ni=1
Si .

An agent’s type can encapsulate its preferences, experiences or its

beliefs about the state of the world which can evolve with time.

Examples are an agent’s wealth after multiple interactions with

the mechanism or how much of a good it possesses (for exhaustive

discussions on types within MD, see for example [13]).

The variable θi,t evolves according to θi,t ∼ F (·|θi,t−1,xi,t−1)

where F : Θ × X → ∆Θ denotes the distribution of the random

variableθi,t .We denote byθt = (θi,t )i ∈N ∈ Θ andxt = (xi,t )i ∈N ∈

X t . At each time t , each agent i ∈ Nmakes an announcement
âi,t , where each possible announcement is an element within the

type space Θ, the agent then receives an allocation xi,t ∈ X which

is determined by an allocation rule дw1
: Θ ×X t → ∆X t+1 where

w1 ∈ W ⊂ Rl (l ∈ N) is some parameter that is chosen by M.

Additionally, upon making its announcement, the agent receives

payment which is determined by a transfer rule pw2
: Θ → RN+1

which performs transfers between agents (and the mechanism).

Hence, the mechanism M has inputs ât = (a1,t , . . . , ân,t ) which
is the joint set of announcements made by the agents and, X t
which is the current allocation for the agents. Let us denote by

w = (w1,w2) ∈W , a mechanismM(w) is the tupleM= ⟨дw1
,pw2

⟩.

Note that the choice of mechanism is over a functional space which

captures a large class of mechanism rules for which the transfer

rule and allocation rule are measurable functions.
3

Agent i has a policy πi : [0,T ] × Si → ∆Θ which is a map from

the time interval and states to announcements. We denote by Πi the

(non-empty and compact) set of stochastic policies for agent i and

by Π, the joint set of policies for all agents i.e. Π ≜ ×j ∈NΠj . We

denote by Π−i ≜ ×j ∈N\{i }Πj , the Cartesian product of the policy

sets for all agents except agent i ∈ N. Agent i ∈ N receives a re-

ward determined by a function Ri : W ×S×Θ → Rwhich the agent

seeks to maximise. Let us now define the following transition func-

tion P : S × S → [0, 1] given by P(st+1;M(ât ,xt ), F (θt ,xt )), since
the outcome associated to each agent’s choice of a announcement

is affected by other agents’ announcements, the agents strategi-
cally interact, hence, the above setup gives rise to a Markov game

G(w) = ⟨N, P , S,Ri (w, ·),γ ⟩, where γ ∈]0, 1] is the agents’ (com-

mon) discount factor and the value function for each agent i is
given by

4
:

v
πi (θi ),π−i (θ−i )
i (w, s, â)

= Eât∼π ,st∼P
[ ∑
t ≥0

γ tRi (w, st , ât )|s = s0

]
, ∀i ∈ N.

We will refer to the game the agents play as the agents’ subgame

which we denote by G(w). The agent model

3
We assume both pw and дw are drawn from parametric spaces; by the universal
approximation theorem solutions to дw and pw that are close to some measurable

functions can be obtained.

4
With a slight abuse of notation, we omit the dependence of the policy on x for

the value functions. Similarly, though R depends on дw , we express only its direct

dependence onw .

In this framework, we construct a model of the agents’ behaviour

to simulate their response to choices of mechanisms. Each agent

seeks to maximise their own expected cumulative reward. Each

agent’s problem is therefore given by:

πi ∈ arg max

π ′
i ∈Πi

v
π ′
i (θi ),π−i (θ−i )

i ,∀(θi ,θ−i ) ∈ Θ,∀π−i ∈ Π−i . (1)

The agent’s optimisation implies that whenever the agents report

their type using some reporting strategy πi ∈ Π, the agents must

be playing a strategy that maximises their reward. When (1) is

satisfied for all i ∈ N, no other available strategy increases their

reward given the strategies of other agents. The resulting strategy

profile π is a Nash equilibrium (NE) strategy. We denote the set of

NE policies by I(w) for somew ∈W . A mechanism M is said to

be incentive compatible (IC) whenever (1) is satisfied.
The framework of this paper covers the following cases:

Dynamic MD: The agents’ types evolve over time. The agents re-

peatedly interact with the mechanism and seek to maximise their

expected cumulative rewards, for example agents may have a fixed

budget over multiple interactions or acquire amounts of a divisible

good over multiple rounds.

Learning by doing: Agents learn about their types and update their

behaviour after repeated interactions. The agents base their current

announcement on the allocation received and their announcement

in the previous time step. An example of this type of interaction is

e-commerce websites [15].

(Static) MD: This is a degenerate case in which the time horizon of

the problem is one step e.g. a one-off auction. Here, agents make a

single decision.

Extensions of the VCG mechanism to the dynamic case do not

ensure IC - this is because the agents’ intertemporal rewards depend

on expected future announcements and mechanism payments so

both deviations that are contingent on observed information and

sequences of deviations are available to agents [12]. Moreover, in the

VCG setup, agents are assumed to have immediate full knowledge

of their own type and can compute the corresponding optimal

behaviour. To relax these restrictions, wewill formulate the problem

facing M as a (black-box) stochastic optimisation problem over a

parametric space of mechanisms and allow the agents to learn their

optimal behaviour through a sequence of interactions.

We are now in a position to state the problem facingM:

TheOptimalMechanismDesign problem In this setup, the goal

of the mechanism designer is to find a mechanism that maximises

the mechanism deisgner’s objective. In particular, the mechanism

designer seeks to construct a mechanism which is composed of a

parameterised pair of functions дw 1
and pw 2

which are the alloca-

tions rule and transfer rule. Hence, the optimal mechanism design

problem is given by the following:

Findw⋆ ∈W s.th.

w⋆ ∈ argmaxEπ
[
G(π ,w)

]
, s.t. π⋆ ∈ I(w), (2)

Note that the choice ofw ∈W fixes a component of the subgame

played by the agents.

We refer to the functionG : S ×Π×W → R as themechanism
objective function. This function can be an external objective

(that depends on the announcements and agents’ allocations) e.g.

3



revenue in an auction or firm profit or the joint welfare of all agents
i.e., G =

∑
i ∈Nv

(·)

i .

Therefore the task facing M is to find the parameter w that

maximises G given that the agents play their NE strategies. In the

setting we consider, M need not know it objective functions up

front but we assume a sufficiently accurate proxy to Ri is available.
We demonstrate that M can learn the parameter w⋆

whilst the

agents learn their NE strategies.

2.1 The Mechanism Design constraints
In MD, certain properties are prescribed to the mechanism to ensure

satisfactory outcomes. A key mechanism objective is to induce

truthful revelations so that the agents announce to the mechanism

their private information. Truthful announcements are generally

desirable since if the agents announce false preferences, then using

their announcements, the mechanism may then enact suboptimal

outcomes. Since the agents are rational, they act to maximise their

self-interest.

As is standard, we focus on direct-revelation IC mechanisms -

mechanisms for which the only actions available to the agents are

to communicate claims about their types toM. By the Revelation
Principle [14], the sameG found by solely studying direct-revelation

IC mechanisms can be implemented by an arbitrary mechanism.

Recall that a mechanism M = ⟨дw1
,pw2

⟩ is defined by a tuple

that consists of an allocation rule дw1
: Θ × X t → X t+1 and a

transfer rule pw2
: Θ → RN+1

where w = (w1,w2) ∈ W is a

chosen by M.

The following is a non-exhaustive set of properties for direct

mechanisms ∀w ∈W ,∀(πi ,π−i ) = π ∈ I(w):

(1) Individual rationality (IR): v
πi (θi ),π−i (θ−i )
i ≥ 0.

(2) Implementability:

⟨дw1
(π(θ)),pw2

(π(θ))⟩ = ⟨дw1
(θ ),pw2

(θ )⟩ .

IR implies that for each agent, the expected cumulative reward

after participating is weakly positive hence, entering is beneficial.

Implementability implies truthfully reporting their type is a solu-

tion to the agents’ problem. In particular, when implementability is

satisfied, the agents find it optimal to make announcements that

truthfully reveal their types and, by the revelation principle, max-

imise the objective G.
We prove a series of theoretical results: first, we prove that the

mechanism objective (for example, social welfare) is continuous

w.r.t. changes in the mechanism design parameters - this enables

the use gradient-based techniques for expedient computation of the

optimal mechanism. We construct a method which uses RL to com-

pute the agents’ joint equilibrium responses to a chosen mechanism.

We then show that this framework induces ICmechanisms.We then

use a two-timescales method of stochastic approximation to show

that how adaptive agents can learn their equilibrium strategies in

response to mechanisms whilst the mechanism parameters are be-

ing updated. This yields a method by which the optimal mechanism

parameters can be computed expediently using a simulated model

of agents’ responses, yielding mechanisms that ensure the IC and

IR constraints are satisfied.

In our method, the mechanism selection occurs over a large

space of functions that determine the allocation function and trans-

fers for the mechanism. This enablesM to make selections over a

large range of mechanisms leading to outcomes that maximise M’s

objectives.

As remarked earlier, the IC condition in classical MD imposes

strong assumptions on the ability of agents to reason about their

environment and compute optimal solutions to complex decision

problems with arbitrary accuracy. This assumption is often violated

in practice. To this end, we now introduce an additional feature

that enables more accurate descriptions of real-world multi-agents

systems. We incorporate a form of cognitive constraints faced by

real-world agents, this in turn enables us to simulate boundedly
rational behaviour for any given choice of mechanism.

2.2 Bounded rationality
It is widely observed that the decisions made by agents within

economic settings are affected by cognitive constraints which vastly

alter system outcomes. This results in significant deviations in agent

behaviour from that predicted within classical MD. To account for

this, we embed cognitive constraints or bounded rationality (BR)

within the agent’s problem. We endow each agent’s reward with a

regulariser that acts to inhibit large immediate changes in agents’

decision policies from some initial policy. This naturally embeds

decision inertia in our model of the agents’ responses. BR has been

studied in RL literature [3] and, recently in multi-agent RL systems

[9].

The following is a description of the agents problem when the

agent exhibits bounded rationality:

Agent’s BR objective: : Letw0,w1, . . . , be a sequence of parame-

ters inW s.th.wk → w⋆
as k → ∞, then the agent’s BR objective

is given by the following ∀i ∈ N,∀st ∈ S :

max

πi ∈Π
v
πi (θi ),π−i (θ−i )
i (·, (âi , â−i )), âi ∼ πi

s.t.

∑
t ≥0

E
[
γ tKL(πi (·|st )∥π0(·|st ))

]
≤ β , (3)

for a given β ∈ R>0 where (π0)i ∈N ∈ I(w0) and where KL denotes

the Kullback Leibler divergence, which is a distance measure be-

tween two statistical distributions. Hence, π0 is the best-response

policy for the agent against the first mechanism encountered. The

constraint (3) captures the observed phenomenon of anchoring in

which agents excessively rely on initial information presented [18].

In the limit β → ∞, we recover the case of full rationality as a

specific case, when β = 0 the agents fix their policy after their first

interaction. The Lagrangian L corresponding to the problem for

agent i with BR is given by:

L(s, â,w) =
∑
t ≥0

Eπ ,st∼P
[
γ tR

β
i (w, st , ât )

]
,

whereR
β
i (w, st , ât ) ≜ Ri (w, st , ât )−

1

β KL(π (âi,t |st )∥π (âi,1 |s1)) for

some β ∈ R.
With IR, the Lagrangian LI I is: LI I = (1 + λ)L.

3 THEORETICAL ANALYSIS
In this section, we prove the convergence of our method to an

optimal mechanism inwhich the agents enact best response policies.

We prove that given dominant strategy implementation, the agents’

subgame is reducible to a Markov decision process (MDP) and the
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game exhibits a continuity property in the MD’s parameters. The

results enable stochastic gradient methods to compute the optimal

choice ofw . The results are built under the following assumption:

Assumption 1. The functionsG and Ri are Lipschitz continuous
inw . i.e ∃cG , cRi > 0 s.th. ∀w,w ′ ∈W ,∀i ∈ N

∥Ri (w, ·) − Ri (w
′, ·)∥ ≤ CRi ∥w −w ′∥, (4)

∥G(w, ·) −G(w ′, ·)∥ ≤ CG ∥w −w ′∥. (5)

First, let us introduce a useful concept:

Definition 3.1. A policy π⋆i ∈ Π is a dominant strategy if the

following holds ∀i ∈ N,∀θi ∈ Θ,∀(πi ,π−i ) ∈ Π:

v
(π⋆
i (θi ),π−i )

i (·, (π⋆i (θi ),π−i )) ≥ vπi ,π−ii (·, (πi (θi ),π−i )).

A dominant strategy is therefore a best-response strategy irre-

spective of the actions of other agents. Implementation in dominant

strategies endows mechanisms with robust equilibrium outcomes.

Dominant strategies do not require M to have knowledge of the

agents’ assumptions about each other’s actions or rationality, nor
isM required to make distributional assumptions about the agents’

types. For these reasons, dominant strategy implementation is fre-

quently used within MD [16]. For these reasons, in our analysis we

assume for each agent, there exists a dominant strategy.

The following theorem is a key result:

Theorem 3.2 (Reducibility). Each agent’s problem is reducible
to an MDP, that is, for any i ∈ Nwe have that:{

π⋆i ∈ arg max v
πi (θi )
i (w, (si,t , ·),θ

′
i,t )

}
⊆ I(w), (6)

Theorem 3.2 establishes that the agents’ NE policy for the sub-

game is obtainable from the solution to anMDP. This vastly reduces

the difficulty of the problem since we can now safely circumvent

analysis of the strategic component whilst ensuring we generate a

solution to the strategic game.

We denote the set of policies π ∈ Π that satisfy (6) by
¯I(w) for

some w ∈ W . Using (2) and (6) we additionally observe that the

MD problem now becomes:

Optimal Mechanism design problem II (MP II)
Findw⋆ ∈W s.th.

w⋆ ∈ arg maxEπ
[
G(π ,w)

]
s.t. π⋆ ∈ ¯I(w⋆), ∀i ∈ N.

TheMP II captures that the NE policies π⋆ = (π⋆i )i ∈N that enter

M’s problem are optimal policies of an MDP.

We now study the effect of modifying w on I(w). To use of

gradient techniques, it is necessary to establish a form of continuity

of the game G(w) in the parameterw . To this end, we introduce a

formal notion of continuity of I(w) w.r.tw :

Definition 3.3. Given metric space X , let Bα (x) ≜ {y ∈ X :

∥x − y∥ < α } denote the open ball with radius α > 0 around

x ∈ X . Then x ∈ I(w) is essential inw if for any ϵ > 0, ∃δ > 0 :

w ′ ∈ Bϵ (w) =⇒ x ′ ∈ Bδ (x) ∀x ′ ∈ I(w ′).

The essentiality condition states that small changes in the pa-

rameterw lead to a small change in the set of IC policies.

Having formalised a notion of continuity, we are now in position

to state the continuity result:

Theorem 3.4 (Essentiality). The agents’ subgame is essential
inw .

Theorem 3.4 establishes that small changes in the mechanism

parameterw , lead to small changes in the equilibrium outcome of

the agents’ game. This provides information about the behaviour of

the game in some neighbourhood for each chosenw . Crucially, as

we later show, this property is inherited by the mechanism objective

function itself. Theorem 3.4 underscores the data efficiency of the

method.

The following result is required for proving Theorem 3.4:

Proposition 3.5. The MDP itself is Lipschitz continuous, in par-
ticular, there exists a constant c > 0 s.th.

∥v
π⋆

1
(θ )

i (w, ·) − v
π⋆

2
(θ )

i (w ′, ·)∥ ≤ c ∥w −w ′∥, (7)

∀i ∈ N,∀w,w ′ ∈W ,∀π⋆
1
∈ ¯I(w),π⋆

2
∈ ¯I(w ′).

The Lipschitz continuity establishes that small changes in the

parameter w ∈W lead to small changes in the value function of

the game G(w).

Proof of Proposition 1���vπi (θi )i (w, s, ·) −v
πi (θi )
i (w ′, s, ·)

���
=

�����E
[
max

π ∈Π
[Ri (w, s, ·) + γ

∑
s ′∈S

p(s ′ |s, ·)v
πi (θi )
i (w, s ′, ·)

] �����
−

�����E
[
max

π ∈Π
[Ri (w

′, s, ·) + γ
∑
s ′∈S

p(s ′ |s, ·)v
πi (θi )
i (w ′, s ′, ·)

] �����
≤ max

π ∈Π

��Ri (w, s, ·) − Ri (w
′, s, ·)

��
+ γ

∑
s ′∈S

p(s ′ |s, ·)
���vπi (θi )i (w, s ′, ·) −v

πi (θi )
i (w ′, s ′, ·)

���
Recall that γ < 1, we therefore find that���vπi (θi )i (w, s, ·) −v

πi (θi )
i (w ′, s, ·)

���
≤ (1 − γ )−1

max

π ∈Π

��Ri (w, s, ·) − Ri (w
′, s, ·)

��
≤ c



w −w ′

 ,
where c ≜ CRi (1 + γ )

−1
, which proves that vi is Lipschtzian inw .

Therefore,vi is uniformly continuous w.r.t.w so that ∀ϵ > 0, ∃δ >
0 s.th ∥w − w ′∥ < ϵ =⇒ |v

πi (θi )
i (w, s, ·) − v

πi (θi )
i (w ′, s, ·)| < δ ,

since this holds for any π ∈ Π, we fix πi ∈ I(w) from which we

deduce the result.

Lemma 3.6. For each type, there is a unique optimal value function
for any agent.

The result follows from the uniqueness of the value function of

the MDP induced by the agents’ game and the contraction mapping
theorem (see [1]).

We immediately deduce the following result:

Corollary 3.7. For anyw ∈W , the set I(w) is a singleton.

Further to reducing to an MDP, each agent’s problem admits a

closed form solution. We now turn to the solutions of the agents’

problem. The following results provide closed expressions for the

optimal strategies for the agents’ subgame:
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Proposition 3.8. The optimal policy for the agents’ problem is
given by the following expression:

π⋆i (·|st ) =
π0(·|st ) exp

(
v
πi ,π−i
i (w, (âi , â−i ))

)
Eπ0

[exp v
πi ,π−i
i

(
(w, (âi , â−i ))

)
]
. (8)

The optimal policy for the agents’ problem with IR is an analo-

gous expression.

Proof of Proposition 2. By the Bellman equation corresponding to
the agent’s reduced problem (MDP) we have:

γ +vπi ,π−ii = Ri (st , ·) + Eπ , ·[v
πi ,π−i
i ] − KL(πi ∥π0(st ))

= Ri (st , ·) + Eπ , ·

[
log

(
π

π0(st )

)
+vπi ,π−ii

]
(9)

= Ri (st , ·) − log

(
Eπ0

[exp−vπi ,π−ii ]

)
− KL

(
πi




 π0 exp{−vπi ,π−ii }

Eπ0

[
exp{−vπi ,πii }]π0(st )

)
(10)

The result follows after observing the policy πi maximises the RHS of
(10) i.e. minimises the KL divergence is that in (8). ■

Lemma 3.9. G is Lipschitz continuous and almost everywhere (a.e.)
differentiable inw .

Lemma 3.9 follows since the composite functionд1◦(. . .◦(дn (·) . . .))
of n < ∞ Lipshitzian functions д1, . . . ,дn is Lipschitzian then ap-

plying Rademacher’s lemma.

Proof of Lemma 3
Fixw ′ ∈W andw ∈W and definey(w) ≜ vπii (w, ·) andy(w ′) ≜

vπii (w ′, ·). By the Lipchiztianity of G,R, ∃cG , cR > 0 s.th.��y(w) − y(w ′)
�� = �����E

[∑
t ≥0

γ t {Ri (w, ·) − Ri (w
′, ·)}

] �����
≤ E

[∑
t ≥0

γ t
��Ri (w, ·) − Ri (w

′, ·)
��]

≤ cR
∑
t ≥0

γ t


w −w ′



=
cR

1 − γ



w −w ′

 .
Moreover, we can find constants cG , c > 0 s.th.

|G(y(w)) −G(y(w ′))|

≤ cG |y(w) − y(w ′)|

≤ c ∥w −w ′∥,

from which we deduce the thesis. ■
We now establish the existence of an optimal value w⋆ ∈ W

that solvesM’s problem.

Lemma 3.10. There exists a maximum for the MD problem.

Lemma 3.10 follows from the extreme value theorem. Crucially,

Lemmas 3.9 and 3.10 imply that gradient methods can be applied

to obtainw⋆ ∈W . As we discuss in the next section, Lemma 3.10

permits the application of a two timescales method which ensures

convergence to an optimal policy while the mechanism parameters

are updated towardw⋆
.

4 SOLUTION METHOD
Our method involves concurrent computation of the mechanism pa-

rameterw and the agents’ policy parameters for the simulated game.

In order to ensure the agents are playing IC strategies, it is necessary

for the agents’ policies to converge to their equilibrium strategies. In

accordance with Theorem 3.2, the agents’ equilibrium policies can

be found by finding an optimal policy for an MDP, hence we seek

the pair (π⋆,w⋆) where π⋆ ∈ I(w⋆) andw⋆ ∈ arg maxG(π ,w).

The iterative process (π1,π2, . . . ;w1,w2, . . .) → (π⋆,w⋆) gener-

ates two stochastic approximation processes for the policy updates

and updates forwk≥1
(see Algorithm 1). The algorithm involves

Inputs:M’s learning rate ξ , agents’ learning rate η ≪ ξ .

1: Initialise agents’ strategy profile π0.

2: Initialise reward modifier parameterw0.

3: while true do
4: Each agent i updates its policy πi using some RL algorithm

with learning rate η.

5: M estimates ∇̂G(w,π ).

6: M updatesw using ∇̂G(w,π ) with learning rate ξ .
7: end while
8: Returnw .

Algorithm 1: Two timescales RMD.

estimating the gradient ∇̂G(w,π ) since bothG and its gradients are

unknown. Though standard approximation techniques (e.g. Kiefer-

Wolfowitz) can be used, these require evaluation of two points of

the objective to compute an estimate. We use a one-point gradient
estimation method that requires that only a single random point

of the objective function be evaluated. Using single random point
evaluation is sufficient to approximate gradient descent [6].

To achieve convergence with concurrent updates, we use a two
timescales method in which updates to wk are performed with a

lower learning rate than the policy updates, this generates a quasi-
static appearance w.r.t. the policy updates. Under these conditions,

the two update processes converge [2]. Two timescales methods

have been applied to tackle convergence problems in actor-critic

methods [11] and multi-agent RL [20]. To apply the method, we

observe that by Lemma 3.6, for any w ∈ W , the MDP associated

with the agents’ problem has an asymptotically stable point.

Theorem 4.1. [2] The two timescales method converges.

The theorem involves a choice for the learning rates of the pro-

cess - for complete details see [2].

To ensure the algorithm converges to an optimal solution for

M both the updates to the policy π and w (namely (ξ j )j ∈N and

(wk )k ∈N) are required to converge. Lemma 3.10 guarantees the

existence of a solution forw⋆
. Convergence of the RL algorithm is

guaranteed using standard algorithms given Lemma 3.6 [1].

The following proposition provides this guarantee:

Proposition 4.2 (Convergence). Algorithm 1 converges to a
(local) maximum of G.
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5 EXPERIMENTATION
Multi-lane experiment (Coordination)

We now show how our method can be used to tackle social
welfare maximisation in a multi-agent coordination problem with

partial observability. The setting consists of N > 2 agents and

N lanes of length L ∈ R>0 when L represents the agent’s goal

state. At time t = 0, each agent occupies a position xi,0 in their

own lane, each agent’s initial position (on their lane) is drawn

randomly according to some uniform distribution F over [0,L/2].

Each agent i chooses an action ui ∈ [0,L/2] which is sampled from

a policy π : [0,L/2] → [0, 1] which determines a forward (vector)

movement so that the location of the agent at the next time step

is xi,T = xi,0 + ui at which point the game terminates. Agents

are penalised for larger actions. Crucially, the agents are heavily

penalised for failing to coordinate their terminal positions. Denote

by xt ≜ (xi,t )i ∈N the agents’ joint location at time t . Each agent’s

value function is given by:

vi (x0,π ) = Eπ [R(xT )|(xi,0)i ∈N ∼ F ], (11)

where the reward function is R(xT )= −β
∑
j ∈N(xi − x j )

2 − δ |ui |}]
where β ≫ δ > 0.

In this setting, the agents observe neither the actions nor the

positions of other agents, hence adaptive agents fail to coordinate.

In particular, each agent learns only to reduce its movement costs

resulting in the agents occupying different terminal positions and

incurring high costs. This is shown in Fig. 1 which shows the agents’

reward is simply the reward that follows from following an earliest

arrival policy when the initial location of the agent is randomly

sampled.

We now include a mechanismMand hence, introduce a payment

function дw =
∑P
j=0

w js
j
for some P ∈ N. Now each agent i ∈ N

has a reward given by the following:vi (x0,π ,w) = Eπ [R(xT ) +

дw (xi,0)|(xi,0)i ∈N ∼ F ], , The problem facing M is to maximise a

social welfare function (SWF), that isG(π (w)) = E[
∑
i ∈Nvi (x0,π )],

(this is the agent’s value function without дw ) by selecting the

parametersw for дw .

In this experiment, M learns the transfer function дw which

encourages coordination, leading to higher (intrinsic) rewards for

all. TheM requires neither observations of the agents’ actions or the

joint state. This is shown in Fig 1. which plots that SWF by episode

before and after M has been introduced. Without the introduction

of M, the agents rewards are highly noisy and remain negative.

Introducing M both stabilises the agents’ rewards and leads to a

vast increase in payoff.

6 CONCLUSION
In this paper, we showed that computing optimal mechanisms

when agents’ preferences and their distributions are unknown to

the agents and the mechanism. By proving continuity results, we

showed that optimal mechanism parameters can be computed effi-

ciently using stochastic approximation.
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