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ABSTRACT
A key problem for the design and analysis of trading agents that
are deployed in financial markets is coping with risk-sensitivity,
but this problem has received relatively low attention from the AI
community. In this paper, we introduce an approach for automated
and intelligent market-making using risk-sensitive reinforcement
learning. The market-maker has multiple objectives, including but
not limited to making profit, controlling inventory and controlling
market quality. We model the agent-environment interaction by a
Markov decision process. We simulate the financial market using
the Glosten-Milgrom information model. We show that our auto-
mated market-making agent can intelligently learn to achieve its
objectives by interacting with other trading agents in the simu-
lated environment. As expected, we find that in most cases, risk-
averse market-makers who follow deterministic policies tend to
make less profit compared to risk-neutral market-makers. How-
ever, when we use a Boltzmann softmax action-selection rule, the
resulting policy yields more profit while also maintaining a low
level of inventory and an acceptable level of market quality.

KEYWORDS
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1 INTRODUCTION
A majority of trading activities in equities markets occur through
financial exchanges. There are two main types of orders submitted
to such exchanges: limit orders and market orders. Limit orders
refer to orders with specified limit price and quantity. The limit
price is the maximum (minimum) price the buyer (seller) would be
willing to pay for the specified quantity. Market orders on the other
hand refer to orders that only specify a quantity to be traded at the
best available bid or ask price. Market orders guarantee execution,
whereas there is no guarantee on limit orders being fully executed.

In addition, there are two main types of market mechanisms
deployed in modern financial exchanges: order-driven and quote-
driven. Order-driven mechanisms refer to the scenario where buy-
ers and sellers submit their limit or market orders to the exchange
and the orders are processed by a price-time priority matching en-
gine. This mechanism implements a double sided auction. The un-
matched limit orders are collected into the limit order book. The
matchingmechanism can occur continuously, where the order book
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is updated after the insertion of an order or discretely, where the
order-book is updated in a pre-specified intervals. Market partic-
ipants in an order-driven market may implement mixed trading
strategies including market-making. The quote-driven mechanism
on the other hand refers to the scenario where the exchange des-
ignates a specific market-maker that must offer both competitive
buy and sell prices to market participants. The quote-driven mar-
ket reduces transparency for market-participants, but provides a
greater degree of liquidity to the market.

Market-making refers to a class of trading strategies where a
market participant submits both buy and sell limit orders to the
exchange. The main role of market-makers is to provide liquidity.
More specifically, a market-maker quotes competitive limit orders
to buy and sell on both sides of the limit order book in order to
make a profit from the bid-ask spread while also providing liquid-
ity to other market participants. In general, market-makers are ex-
posed to two main sources of risk [14]: 1) the risk of holding in-
ventory; the market-maker aims to hold zero inventory by a given
trading horizon and 2) The risk of adverse selection; the market-
maker may face traders with better information about the true or
the fundamental value of the asset. The market-maker has there-
fore multiple objectives including, but not limited to, making a
profit, controlling its inventory, and controlling its quoted bid-ask
spread, all over a pre-specified time-horizon and in a competitive
environment.

In this paper, we introduce a framework for automated market-
making using risk-sensitive reinforcement learning. We model the
agent-environment interaction by a finiteMarkov decision process
in discrete-time with a linear reward function. We simulate the
financial market using the Glosten-Milgrom1 information model
[10]. Our market-making framework is an extension to the Chan-
Shelton market-making model, studied extensively in [6], [7] and
[17]. Our risk-sensitive reinforcement learning framework is based
on Mihatsch-Neuneier one-step temporal difference learning algo-
rithms [13]. While all of these components have been studied be-
fore, our approach provides a novel combination, in particular the
use of risk-sensitive learning as a way to develop a market-making
strategy.

In this paper, we present experimental results for both the risk-
neutral (standard) and the risk-sensitive versions of on-policy SARSA
andDouble-SARSA reinforcement learning algorithms. The SARSA
algorithm is introduced in [16] and is examined further in [20] and
[19]. The numerical analysis of reinforcement learning algorithms
with double learning is also studied extensively in [21].

1The Glosten-Milgrom model is used as a baseline for initial investigation. More ad-
vanced order-driven market models will be investigated in the future work.
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We show that our risk-sensitive market-making agent can learn
to achieve its objectives by interacting with other trading agents in
the simulated environment. We find that in most cases risk-averse
market-makers who follow deterministic policies tend tomake less
profit compared to risk-neutral market-makers. However, when
we use a Boltzmann softmax action-selection rule, the resulting
policy yields more profit than the standard approach while also
maintaining a low level of inventory and an acceptable level of
market quality. By market quality, we mainly refer to the bid-ask
spread of themarket-making agent. Lower spread generates higher
market quality but lower profit for themarket-maker, whereas higher
spread generates more profit for the market-maker and lower mar-
ket quality for other trading agents. It is worth mentioning that
competition betweenmarket-makers naturally results in lowermar-
ket spread. In this paper, however, we focus on a single market-
maker with bounded bid-ask spread.

2 RELATEDWORK
The Glosten-Milgrom information model [10] describes the micro-
structure price formation process and explains the existence of a
bid-ask spread as a consequence of a market-maker’s adverse se-
lection. In this model, a single market-making agent interacts di-
rectly with a group of informed and a group of uninformed trading
agents in order to trade a unit share of an asset over a pre-specified
time-horizon [0,T ]. In addition, it is assumed that a stochastic pro-
cess, denoted by (Pt )t ∈[0,T ] exists that shows the evolution of the
true or the fundamental value of the asset. The fundamental value
is assumed to be only affected by exogenous factors. Moreover,
it is assumed that the market-maker and the uninformed traders
have only access to publicly available information, whereas, the in-
formed traders have access to superior private information about
the fundamental value of the asset. In particular, informed traders
know the exact realisation of (Pt )t ∈[0,T ].

Chan-Shelton [7] implemented the Glosten-Milgrom informa-
tion model and used a standard (risk-neutral) on-policy SARSA re-
inforcement learning algorithmwith epsilon-greedy action-selection
rule as well as Monte Carlo simulation to track the fundamental
value (Pt )t ∈[0,T ]. In terms of market-making, tracking this stochas-
tic process refers to quoting ask and bid prices such that they en-
close and bound the fundamental value. In this case, the market-
maker only trades with the uninformed traders and consequently
makes a profit.

A similar market-making framework is studied in [4], [8] and
[9]. They used Bayesian learning as opposed to reinforcement learn-
ing in order to learn a prior over the likelihood of the true or the
fundamental value of the asset. In this study, we ignore the ex-
plicit estimation of this stochastic process and instead rely on the
insights gained from the properties of theMarkov decision process
to track this stochastic process.

The literature on theoretical and experimental market-making
models is extensive, however, very few of those used the Glosten-
Milgrom information model or machine learning techniques to in-
vestigate optimal strategies. We therefore focus our attention to
mainly extend the Chan-Shelton [7] and Das [8] market-making
models.

3 SIMULATION OF FINANCIAL MARKET
We implement the Glosten-Milgrom information model [10] with
a single market-making agent, a group of informed and a group
of uninformed trading agents. The target trading volume is a unit
share of the asset. We also simulate an exogenous integer-valued
stochastic process (Pt )t ∈[0,T ] that describes the evolution of fun-
damental value of the asset.

In our simulation, the market-making agent submits only pas-
sive limit orders whereas other trading agents (informed or unin-
formed) can only submit aggressive market-orders. This assump-
tion is made in order to guarantee full execution of orders submit-
ted by informed or uninformed agents.

Uninformed traders are equally likely to buy or sell a unit share
of the asset at any given time. Informed traders on the other hand,
implement a buy-low and sell-high strategy. It is assumed that in-
formed and uninformed traders are not allowed to interact with
each other and can only trade with the market-maker. The market-
maker’s quotes are guaranteed to be executed by a trader. It is not
known to the market-maker which type of trader executed the or-
der at the ask or at the bid price, and themarket-maker has no prior
knowledge about the fundamental value (Pt )t ∈[0,T ]. The market-
making agent simply has to learn and adapt to these events in order
to find an optimal and profitable strategy.

In addition, there is a guaranteed arrival of an event at each
time-step. There are five events in total including the arrival of an
informed trader with probability λi , the arrival of an uninformed
buyer with probability λu , the arrival of an uninformed seller with
probability λu as well as upward jump in the fundamental value
with probability λp and downward jump in the fundamental value
with probability λp . Thus the relation 2λp + 2λu + λi = 1 holds at
all time-steps.

4 ALGORITHMIC MARKET-MAKING
We treat the market environment as a Markov decision process
which the market-maker solves using reinforcement learning.

4.1 Markov Decision Process (MDP)
Wemodel the sequential decisionmaking task of themarket-maker
by a MDP. A finite, stationary MDP is a tupleM = ⟨S,A,R,P⟩,
where, S is a finite collection of states, A is a collection of finite
sets of possible actions, R is the set of possible values of the im-
mediate rewards and P describes the transition probabilities. In
particular, P(s ′, r | s,a) = P(St+1 = s ′,Rt+1 = r | St = s,At = a)
for s , s ′ ∈ S, a ∈ A and r ∈ R, where P is a probability measure
over the sample space Ω.

In this model, St = (IMBt , SPt ) ∈ S ⊆ Z × N is the set of
states at time t , At = (∆ASKt ,∆BIDt ) ∈ A ⊆ Z × Z is the set of
actions at time t and Rt = wpro∆PROt −winv |INVt |−wsprSPt is
the immediate reward at time t .

The immediate reward is a linear function of factors with differ-
ent weight parameters wpro , winv and wspr for profit, inventory
and market-maker’s bid-ask spread. IMBt denotes the volume im-
balance. The volume imbalance is determined as the number of buy
orders minus the number of sell orders for a unit share of the asset.
SPt = ASKt − BIDt denotes the market-maker’s bid-ask spread.
The spread is non-negative since ASKt ≥ BIDt . INVt denotes the
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market-maker’s inventory and ∆ASKt = ASKt −ASKt−1 ∈ Z and
∆BIDt = BIDt − BIDt−1 ∈ Z correspond to the changes in the
market-maker’s quotes. The market-maker’s profit at every time-
step is computed as follows.

∆PROt+1 =

{
ASKt − Pt If a trader buys
Pt − BIDt If a trader sells

The agent-environment dynamics is as follows: at time t , the
market-maker observes the state St = s and takes action At = a
according to a stochastic, stationary and Markovian policy. The
action of the market-maker updates the bid and ask prices from
the previous time-step and creates a new pair (ASKt ,BIDt ). The
traders then observe this change and react to this price based on
their level of information. In particular, informed traders enter the
market with probability λi , and observe Pt and (ASKt ,BIDt ) and
submit market order buy ifASKt < Pt , market order sell if BIDt >

Pt , and nothing at all if BIDt ≤ Pt ≤ ASKt . Uninformed traders,
on the other hand, only observe (ASKt ,BIDt ) and submit market-
order buy or sell with equal probability λu . At time t + 1, transi-
tion to the new state St+1 = s ′ occurs and an immediate reward
Rt+1 = r is received by the agent. The new state and the immedi-
ate reward are jointly distributed according to the transition prob-
ability P(s ′, r | s,a). The agent then observes St+1, takes action
At+1 and traders react to the adjusted quotes. The dynamics then
continues until the end of the episode at time t = T . The agent-
environment interaction is depicted in Figure (1).

Agent:
Market-Maker

Environment:
Activity of traders
(informed or unin-
formed) as well as
the evolution of Pt

At ∈ ASt ∈ S Rt ∈ R ⊆ R

Figure 1: The agent environment interaction in a MDP with
state St , action At and reward Rt at time t . Pt is a stochastic
process that shows the evolution of the fundamental value
of the asset

4.2 Reinforcement Learning (RL)
The main goal of the market-making agent is to find the optimal
policy that updates its bid and ask prices dynamically such that
long term expected profit is maximised. In addition, the market-
maker also needs to control its inventory as well as its quoted bid-
ask spread. In the context of MDPs, the agent aims to maximise the
expectation of the sum of discounted immediate rewards or the re-
turn. The agent’s action-selection process is identified by a policy
π . For simplicity, we consider only stationary policies, therefore π
is time-invariant. More specifically, actionAt is selected according
to π ( . | St ). A time-invariant, Markovian and stochastic policy is a

mapping π : S×A → [0, 1] such that π (a | s) = P(At = a | St = s).
We use stochastic policies to ensure sufficient exploration by the
learning agent.

For a discount factor γ ∈ (0, 1), the episodic return is defined by∑T−t−1
k=0 γkRt+k+1. The state-action value function,Qπ : S×A →
R, for a fixed policy π is given by

Qπ (s,a) � Eπ [
T−t−1∑
k=0

γkRt+k+1 | St = s,At = a]

= Eπ [Rt+1 + γ
∑
a′

Qπ (St+1,a′)π (a′ | St+1) | St = s,At = a]

(1)

The optimal state-action value function is therefore given by

Q∗(s,a) � max
π

Qπ (s,a)

= E[Rt+1 + γ max
a′

Q∗(St+1,a′) | St = s,At = a] (2)

The optimal policy is then obtained by π∗ = argmaxa Q∗(s,a).
Moreover, the transition probabilities, P(s ′,a | s,a) are not known
explicitly, therefore we need to rely on approximation techniques
to solve for the optimal policy. To do this we use temporal differ-
encemethods. Unlike pure dynamic programming, temporal differ-
ence learning algorithms do not require a complete model of the
environment. In addition, they can take advantage of the structure
in MDPs. This makes temporal difference learning a good candi-
date for the reinforcement learning market-maker.

The SARSA algorithm with a learning rate α ∈ R, is a simple
iterative on-policy temporal difference learning algorithm that is
proved to converge to optimality [18]. The update rule for SARSA
is given by

Q(St ,At ) ← Q(St ,At )
+ α(Rt+1 + γQ(St+1,At+1) −Q(St ,At )) (3)

A natural extension to the SARSA algorithm is the Double SARSA
algorithm. It is shown that double-learning improves the standard
single-learning by eliminating the maximum bias caused by esti-
mating theQ-values. Maximisation bias and double learning are in-
troduced and extensively investigated in [23] and [24]. In essence,
the agent learns two independentQ-value estimates. It uses one for
the selection of the best action and the other to update Q-values
for the action selected. This reduces the chances of both estimators
overestimating the same action. The Double-SARSA algorithm has
two update rules:

Q(1)(St ,At ) ← Q(1)(St ,At )

+ α(Rt+1 + γQ(2)(St+1,At+1) −Q(1)(St ,At )) (4)

Q(2)(St ,At ) ← Q(2)(St ,At )

+ α(Rt+1 + γQ(1)(St+1,At+1) −Q(2)(St ,At )) (5)

The agent then picks each of (4) and (5) with probability 0.5. Both
standard SARSA and standardDouble-SARSA algorithmsmaximise
the risk-neutral objective function. A risk-neutral agent is only
concerned with maximising the expectation of the return. Such a
risk-neutral agent is not concerned with the variance of the sum
of discounted rewards when it comes to maximising the return.
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However, in many real-world optimisation problems, in particu-
lar in finance, it is crucial to take into account some degree of
risk-aversion. Doing so will tend to reduce bid-ask spread and the
amount of inventory held.

4.3 Risk-sensitive RL
To take variance reduction into account, we developed a modified
version of the the Mihatsch-Neuneier risk-sensitive reinforcement
learning model [13]. The modification is to take into account the
effects of double learning. The Mihatsch-Neuneier model is a sim-
ple andmathematically tractable framework for risk-sensitive rein-
forcement learning. The model is easily adaptable to one-step tem-
poral difference learning algorithms. In Mihatsch-Neuneier model,
the temporal difference errors are transformed during learning in
every time-step instead of the return of the process.

Formally, let f (κ) : R→ R be a transformation function defined
by

f (κ)(x) =
{
(1 − κ) x , If x > 0
(1 + κ) x , Otherwise

(6)

The function’s argument x denotes the temporal difference error
and κ ∈ (−1, 1) controls the degree of risk sensitivity. The objec-
tive function is risk-avoiding if κ > 0 and risk-seeking if κ < 0.
In addition, the objective function reduces to the risk-neutral case
when κ = 0. The transformation function, appropriately weights
positive and negative temporal difference errors during learning.
It overweights transitions to successor states when the immediate
rewards are smaller than in the average and it underweights tran-
sitions to states that promise a higher return than in the average.
The risk-sensitive update rule for the SARSA algorithm is therefore
given by:

Q(St ,At ) ← Q(St ,At )

+ α f (κ)(Rt+1 + γQ(St+1,At+1) −Q(St ,At )) (7)

In addition, we have a risk-sensitiveDouble-SARSA algorithmwhich
picks each of (8) and (9) with probability 0.5.

Q(1)(St ,At ) ← Q(1)(St ,At )

+ α f (κ)(Rt+1 + γQ(2)(St+1,At+1) −Q(1)(St ,At )) (8)

Q(2)(St ,At ) ← Q(2)(St ,At )

+ α f (κ)(Rt+1 + γQ(1)(St+1,At+1) −Q(2)(St ,At )) (9)

Balancing exploration and exploitation is an important issue
in approximating Q-values. In order to guarantee sufficient explo-
ration, the learning agent needs to explore random states that are
not necessarily recommended by the greedy Q-values. A policy
which is greedy with respect to Q-values is a deterministic policy.
It is usually denoted only by a mapping π : S → A. The agent
that follows the greedy policy will pick the action a ∈ A when in
state s ∈ S according to a = π (s) = argmaxa Q(s,a). The ϵ-greedy,
with parameter ϵ ∈ (0, 1), on the other hand is a stochastic policy
π : S × A → [0, 1] used extensively throughout reinforcement
learning. The agent that follows an ϵ-greedy policy will select an

Table 1: Parameters for the RL algorithms

Parameters Value Description

γ 0.9 Discount factor
α 0.004 Learning rate
ϵ 0.1 ϵ-greedy parameter
τ 0.75 Softmax parameter
κ 0.8 Risk-aversion parameter

Table 2: Parameters for the immediate reward function

Parameters Value Description

winv 0.1 Inventory weight
wspr 0.1 Spread weight
wpro 0.8 Profit weight

Table 3: Probabilities

Parameters Value Description

λu 0.132 Arrival of uninformed trader
λp 0.105 Jump up / down in the fundamental value
λi 0.526 Arrival of informed trader

action a ∈ A when in state s ∈ S according to the following prob-
ability distribution.

π (a | s) =
{
1 − ϵ If a = argmaxa Q(s,a)
ϵ /(| A | −1) Otherwise

(10)

The Boltzmann softmax policy [5] is a stochastic action-selection
system that selects an action according to the Boltzmann probabil-
ity distribution with parameter τ . The Boltzmann distribution is
given by

π (a | s) = P(At = a | St = s) =
eQ (s,a)/τ∑

a′∈A eQ (s,a′)/τ
(11)

The Boltzmann softmax action-selection rule picks random actions
while adjusting the policy more towards the greedy policy. This,
however, depends on the choice of the parameter τ . For example,
higher τ , results in more actions being selected according to a uni-
form distribution, whereas, lower τ , results in more actions being
selected towards the greedy action.

5 EXPERIMENTS
5.1 Experimental Setup
We ran experiments in which we solved the MDP for the market-
making agent using the following four algorithms:
A1: risk-neutral (standard) ϵ−greedy SARSAgiven in update rule

(3) with action selection from equation (10);
This is exactly the model used in [7].

A2: risk-sensitive ϵ−greedy SARSA given in update rule (7) with
action selection from equation (11);
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A3: risk-sensitive ϵ-greedyDouble-SARSA given in update rules
(8) and (9) with action selection from equation (10); and

A4: risk-sensitive softmax Double-SARSA given in update rules
(8) and (9) with action selection from equation (11).

In all cases we used a linear immediate reward function:

R = wpro∆PRO −winv |INV |−wsprSP

combining profit, inventory and market-maker’s spread at every
time-step. The aim of these experiments was to establish whether a
market-maker can use these variants of reinforcement learning ap-
proaches to learn a policy for generating bids and asks that bound
the (time-varying) fundamental value of the good being traded,
and to establish how the risk-sensitive variants, A2–A4, perform in
comparison with the standard, risk neutral, approach, A1 studied
in [7].

Tables 1–3 show the parameters used for these experiments. Ta-
ble 1 shows the parameters corresponding to the reinforcement
learning algorithms with given in update rules (3)– (5) and (7)– (9).
These are the values used in [7]. Table 2 shows the weight param-
eters corresponding to the linear immediate reward function and
Table 3 shows the arrival probabilities of trading agents as well
as the probability of up or down movements in the fundamental
value. The values in Table 3 are also taken from [7]. The funda-
mental value (Pt )t ∈[0,T ] is simulated by a Poisson jump process.
More specifically, the jump sizes are distributed according to a uni-
form distribution, hence, Pt moves either up or down with equal
probability λp .

At the beginning of the simulation, the initial fundamental value
of the asset is known to all traders as well as the market-maker.
The initial fundamental value is set as P0 = 100, and it is therefore
natural for the market-maker to initialise its ask and bid quotes by
(101, 99). In addition, there is a numerical bound imposed on the
set of states and actions. In particular, we used IMBt ∈ {−1, 0, 1},
SPt ∈ {1, 2, 3, 4}, ∆ASKt ∈ {−1, 0, 1} and ∆BIDt ∈ {−1, 0, 1}.
Therefore, given an action-set At and a state-set St , there are 9
possible actions in every 12 possible states. Moreover, the simula-
tion runs for 2000 learning sessions, each learning session runs for
4000 episodes and each episode consists of 250 time-steps.

The performance of the market-maker is measured by the fol-
lowing factors:

Average absolute price deviation

∆P =
T∑
t=1
| BIDt − Pt | + | ASKt − Pt | (12)

Average absolute price deviation ∆P assesses the conver-
gence of the reinforcement learning algorithms to the op-
timal policy. More specifically, it measures the distance be-
tween the true fundamental value Pt and the quotes of the
market-maker (ASKt ,BIDt ) for an episode.∆P is minimised
when the fundamental value is bounded by the quotes of the
market maker (i.e. when BID ≤ Pt ≤ ASKt ).

End of episode inventory
End of episode inventory INVT refers to themarket-maker’s
inventory at the end of a trading horizon. Itmeasureswhether
the agent liquidated or acquired all of its target positions

successfully throughout the episode. The optimal market-
making agent aims to achieve an end of episode target in-
ventory close to zero.

End of episode profit

PROT =
T∑
t=1

∆PROt (13)

End of episode profit PROT measures the profit made or the
loss incurred at the end of an episode.

Average episodic spread

SP =
1
T

T∑
t
SPt (14)

Average episodic spread SP measures the average quoted
spread for an episode.

5.2 Results
Figures 3a–3d show the average absolute price deviation for the
four reinforcement algorithms A1–A4. This is a good metric to ex-
amine for convergence — when the agent can, as we want it to,
accurately predict the fundamental price, its offers can bound the
fundamental price and the absolute price deviation will be close
to zero. The figures clearly show convergence, and further show
that the slowest algorithm to converge is risk-sensitive Double-
SARSA with softmax, A4, which converges to an optimal strat-
egy after around episode 1500. The results for risk-neutral SARSA,
A1, replicate the results of [7], and we would expect that softmax,
A4, would take longer to converge because softmax gives more
weight to exploration early in the learning process. In addition, we
would expect single learning algorithms to converge faster than
their equivalent double learning algorithms, and we see this in the
performance of A2 and A3.

Another view on the process of convergence is given by Fig-
ure 2. This shows results from a series of learning episodes of the
risk-sensitive Double SARSA algorithm with softmax (A4). The
episodes in the top row of Figure 2 show the fundamental price of
the asset (black line) and the market-maker’s spread (grey shaded
area). It is evident that, in the later episodes, the market-making
agent tracks the fundamental value more accurately. The optimal
region, corresponds to the region in which the algorithm has been
trained to produce profitable strategies. In essence, the optimal
region corresponds to a market-making agent that has learnt to
successfully track and bound the fundamental value. Figure 2 also
shows the way that the agent’s performance in terms of profit
and inventory differ between the optimal and non-optimal regions.
Profit, shown in the middle row of Figure 2, decreases over the
episodes in the non-optimal region, and increases over the episodes
in the optimal region. Inventory, shown in the bottom row of Fig-
ure 2, is a large negative quantity (indicating that inventory has
fallen a long way below target) in the non-optimal region while it
is small amount above target in the optimal region.

Figures 3m–3t show the end of episode profit for A1–A4. Fig-
ures 3m–3p give a representation of the distribution of profits over
the last 1000 episodes, and Figures 3q–3t give box plots for the
average profit over the last episodes. This is non-negative for all
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Figure 2: The evolution over time of metrics for risk-sensitive Double SARSA with softmax, A4. These include episodes from
early in the learning process (the non-optimal region, episodes 25, 100 and 500) and from after learning has converged (the
optimal region, episodes 3250, 3500, 3750). The graphs plot (top to bottom) bid/ask against true fundamental value, profit, and
inventory. In the non-optimal region, inventory becomes negative.

algorithms, and and relatively high for the risk-sensitive agent us-
ing Double-SARSA and softmax. Figures 3e–3l show the inventory
level in the optimal region, again both as a distribution, Figures 3e–
3h, and as box plots Figures 3i–3l. The box plots, in particular, make
it clear that all of A1–A4 have an optimal region inventory that
is close to zero. It is worth noticing that, although inventory is
not a state variable in the MDP, it is still minimised, and minimis-
ing inventory is desirable behaviour for the market-making agent.
Finally, Figures 3u–3x shows the average episodic spread for all
episodes including the optimal region.

5.3 Analysis
Figures 4a, 4b and 4c provide a head-to-head comparison of the
four reinforcement learning algorithms, A1–A4. Figure 4a com-
pares inventory, Figure 4b compares profit, and Figure 4c compares
spread. The comparisons are made over the last 1000 episodes of
the optimal region. To establish whether the differences in the val-
ues seen in Figures 4a, 4b and 4c are significantly different, we
performed pairwise tests on all pairs of values shown in each fig-
ure using Welch’s unequal variances t-test. The result is that all
the differences are statistically significant (p = 0.001).

These results are consistent with our expectation for the risk-
sensitive scenarioswith ϵ-greedy, A2 andA3, sincewe obtain lower
average profit, lower average spread and higher average inventory
while also reducing the variance for all three factors as compared
to the standard scenario, A1. However, interestingly, we find that
the risk-sensitive softmax Double-SARSA, A4, not only results in
reduced variance for the three factors in comparison to A1, as we
would expect, but also yields what are arguably better results than
A1, namely lower inventory, higher profit and lower spread. We
consider that this shows A4 is better than A1 since a higher profit
is clearly superior, while lower inventory means less capital tied
up, and a large spread is only desirable in that it creates the oppor-
tunity for a larger profit it is not desirable per se. This result was,
naturally, unexpected, since risk-sensitive frameworks, in general,

produce less profit than risk-neutral frameworks. The result we see
in this case could be the consequence of the risk-sensitive agent’s
more efficient exploration under the Boltzmann softmax policy. In
any case, we conclude that, the use of softmax gives the agent more
control over the fine tuning of the trade-off between risk and profit.

The performance that we see from the risk-sensitive Double-
SARSA with softmax is what an optimal market-making strategy
seeks to achieve — low variance and therefore low risk, high profit,
low inventory and high spread conditional on the fact that the
spread should balance itself with respect to the probability of ex-
ecution. It is worth mentioning that, a market-maker with large
spread has the potential to make more profit, but because the prob-
ability of their orders begin executed becomes smaller, the strategy
may result in large inventory, which is suboptimal. Hence a bal-
ance between factors embedded in the reward function must be
kept at all time to achieve an optimal trading strategy.

Finally, we note that the risk-sensitive framework has the same
time and memory complexity as the standard risk-neutral frame-
work. The immediate reward function is transformed to penalise
the running inventories. This, reduces the dimension in the MDP
state-space and also forces the agent to be more risk-averse. A sto-
chastic policy is implemented directly via the Boltzmann softmax
policy. This allows the agent to explore more and achieve higher
average expected profit in the risk-sensitive case.

6 CONCLUSIONS & FUTUREWORK
In this paper, we introduced a framework for automated market-
making using risk-sensitive reinforcement learning. We compared
the performance of this risk-sensitive market-making agent with
the performance of agents using various risk-neutral (standard)
and risk-sensitive reinforcement learning algorithms using differ-
ent types of action selection. In the context of market-making, we
observed that risk-sensitive reinforcement learning with ϵ-greedy
action selection results in lower average profit, lower average spread
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Figure 3: Results for risk neutral ϵ-greedy SARSA (a, e, i, m, q and u); risk sensitive ϵ-greedy SARSA (b, f, j, n, r and v); risk
sensitive ϵ-greedy Double-SARSA (c, g, k, o, s and w); and risk sensitive softmax Double-SARSA (d, h, l, p, t, x). Note that in (x),
after convergence the variance in the spread is so narrow that it is not visible.
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Figure 4: Comparison of (a) inventory, (b) profit and (c) spread at the end of episodes in the optimal region across the four
different RL algorithms. Within each plot, the algorithms are, left to right, Risk-neutral ϵ-greedy SARSA (A1); Risk-sensitive
ϵ-greedy SARSA (A2); Risk-sensitive ϵ-greedy Double SARSA (A3); and Risk-sensitive Double SARSA Softmax (A4).

and lower average inventory as compared to the standard rein-
forcement learning approach, but has the benefit of reducing the
variance for all three metrics.

Apart from the Chan-Shelton market-making model in [6] that
used reinforcement learning within the Glosten-Milgrom model,
the Das market-making model in [8] is the closest model to ours
under the same underlying market assumptions. More specifically,
Das used Bayesian Learning to update a probability density func-
tion over the possible future prices. This probability density func-
tion forms the market-maker’s belief about the future value of
the fundamental price at every time-step. Although the Bayesian
Learning is fully capable of tracking the fundamental value pro-
cess over the long run, but it fails to immediately track this value
following sudden and large jumps. This can potentially expose the
market-maker to the risk of adverse selection. Our risk-sensitive
RL framework in the trained region seem to cope better with such
sudden changes in the fundamental value process. This can be seen
in the performance in Figure 2 once the learning has converged
(episodes 3250 and 3750 in particular).

In addition, we found that risk-sensitive reinforcement leaning
algorithm driven by softmax action selection not only results in
reduced variance for the three metrics, but also yields a better so-
lution than the standard risk-neutral case. In particular, it creates
a larger average profit than the standard case while maintaining a
low inventory and a high spread. This is a good combination for a
market-making strategy.

It is worth mentioning that the Softmax operator is prone to
misbehaviour. This is primarily due to the fact that it is not a non-
expansion operator for all parameter settings. Therefore conver-
gence to a unique fixed point is not always guaranteed. However,
in our numerical experiments, also based on figure (3), plot (d),
the algorithm with the Softmax action selection rule converges.
Although the choice of Softmax action selection rule is popular
within the RL community, there are alternatives to the Softmax
operator that are more stable and in some cases guarantee conver-
gence. The reader is referred to [1] for a detailed treatment. In fu-
ture work we will be analysing such operators with risk-sensitive
economic agents.

The work reported here is not without limitations. In particular,
because of the simplicity of the Glosten-Milgrom model on which
the model is based, the market-making strategies are not learnt
in an environment that includes a competitive order-driven mar-
ket with multiple market-makers. In addition, the space of trading
agents who are liquidity takers could be more realistic.

In future work, we will be analysing a more realistic simula-
tion of the limit order book with multiple trading agents with mix-
ture of strategies. [12] and [22], for example, proposed a more ad-
vanced information-based model of the market and [2], [3] and
[11] adopted a similar information-based model of the market and
analysed automated trading agents with different levels of informa-
tion based on a continuous double auction system. We will adopt
similar mechanisms to analyse automated market-making strate-
gies driven by risk-sensitive reinforcement learning using a con-
tinuous double auction mechanism. Moreover [15] studied auto-
mated trading agents in a multi-agent-based setting, it is therefore
worthwhile looking into multi-agent reinforcement leaning algo-
rithms. This will help us investigate the interaction and compe-
tition between multiple market-makers using a double-sided auc-
tion. Finally, we will be implementing various risk-sensitive rein-
forcement learning with functional approximation techniques in
order to study a larger state and action space.

REFERENCES
[1] K. Asadi and M. L. Littman. 2017. An alternative softmax operator for reinforce-

ment learning. In Proceedings of the 34th International Conference on Machine
Learning (2017), 243–252.

[2] D. Bloembergen, D. Hennes, P.McBurney, and K. Tuyls. 2015. Trading inmarkets
with noisy information: An evolutionary analysis. Connection Science. (2015).

[3] D. Bloembergen, D. Hennes, S. Parsons, and K. Tuyls. 2015. Survival of the
chartist: An evolutionary agent-based analysis of stock market trading. In Pro-
ceedings of the 2015 International Conference on Autonomous Agents and Multia-
gent Systems. AAMAS ’15. Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems. (2015), 1699–1700.

[4] A. Brahma, M. Chakraborty, S. Das, A. Lavoie, and M. Magdon-Ismail. 2012. A
Bayesian market maker. In Proceedings of the 13th ACM Conference on Electronic
Commerce (2012), 215–232.

[5] J. S. Bridle. 1990. Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimates of parameters. In Advances
in Neural Information Processing Systems (1990).

[6] N. T. Chan. 2001. Artificial markets and intelligent agents. PhD. Dissertation,
Massachusetts Institute of Technology (2001).



Applications of Reinforcement Learning in Automated Market-Making GAIW, May 2019, Montreal, Canada

[7] N. T. Chan and C. R. Shelton. 2001. An electronic market-maker. Technical Report
AI Memo 2001-005, Massachusetts Institute of Technology, AI Lab (2001).

[8] S. Das. 2005. A learning market-maker in the Glosten-Milgrom model. Quanti-
tative Finance 5, 2 (2005), 169–180.

[9] S. Das and M. Magdon-Ismail. 2008. Adapting to market shock: Optimal se-
quential market-making. In Proceedings of the 21st Annual Conference on Neural
Information Processing Systems (2008), 361–368.

[10] L. R. Glosten and P. R. Milgrom. 1985. Bid, ask and transaction prices in a spe-
cialist market with heterogeneously informed traders. Journal of Financial Eco-
nomics. 14, 1 (1985), 71–100.

[11] D. Hennes, D. Bloembergen, M. Kaisers, K. Tuyls, and S. Parsons. 2012. Evo-
lutionary advantage of foresight in markets. In Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’12. New York, NY,
USA, 2012 (2012), 943–950.

[12] J. Huber, M. Kirchler, andM. Sutter. 2007. Is more information always better? Ex-
perimental financial markets with cumulative information. Journal of Economic
Behaviour and Organization. (2007).

[13] Mihatsch O and R. Neuneier. 2002. Risk-sensitive reinforcement learning. Ma-
chine Learning 49 (2002), 267–290.

[14] M. O’Hara. 1995. Market microstructure theory. Blackwell, Cambridge.
[15] S. Phelps, K. Cai, P. McBurney, J. Niu, S. Parsons, and E. Sklar. 2008. Auctions,

Evolution, and Multi-agent Learning. Proceedings of the Symposium on Adaptive
Learning Agents and Multi-Agent Systems (2008), 188–210.

[16] G. Rummery and M. Niranjan. 1994. On-line Q-learning using connectionist
systems. Technical Report CUED/F-INFENG-TR 166, Cambridge University, UK.
(1994).

[17] C. R. Shelton. 2001. Importance sampling for reinforcement learning with mul-
tiple objectives. PhD. Dissertation, Massachusetts Institute of Technology (2001).

[18] S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. 2000. Convergence
results for single-step on-policy reinforcement learning algorithms. Machine
Learning (2000).

[19] S. P. Singh and R. S. Sutton. 1996. Reinforcement learning with replacing eligi-
bility traces. Machine Learning (1996).

[20] R. S. Sutton. 1996. Generalisation in reinforcement learning: Successful examples
using sparse coarse coding. In Advances in Neural Information Processing Systems
(1996).

[21] R. S. Sutton and A. G. Barto. 2018. Reinforcement Learning (2nd. ed.). MIT Press,
Cambridge, Massachusetts.

[22] B. Toth and E. Scalas. 2007. The value of information in financial markets: An
agent-based simulation. Information, Interaction, and (In)Efficiency in Financial
Markets. (2007).

[23] H. van Hasselt. 2010. Double Q-learning. In Advances in Neural Information
Processing Systems (2010).

[24] H. van Hasselt. 2011. Insights in Reinforcement Learning: Formal Analysis and
Empirical Evaluation of Temporal difference Learning. SIKS dissertation series
number 2011-04. (2011).


	Abstract
	1 Introduction
	2 Related Work
	3 Simulation of Financial Market
	4 Algorithmic Market-Making
	4.1 Markov Decision Process (MDP)
	4.2 Reinforcement Learning (RL)
	4.3 Risk-sensitive RL

	5 Experiments
	5.1 Experimental Setup
	5.2 Results
	5.3 Analysis

	6 Conclusions & Future Work
	References

