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ABSTRACT
When an agent interacts with an opponent there are many factors

that make it difficult to determine the appropriate action to take.

The outcomes of the possible actions may be uncertain because of

hidden information or simultaneous actions by the opponent. The

value of a game state may be uncertain because of the complexity

of analyzing the game or because of uncertainty about how the

opponent will act in the future. Finally, in general-sum games,

the agent is uncertain about how its own actions will affect the

opponent’s future play. The Gift Exchange game [10] has been

developed to study the problem of how an agent’s actions can affect

the opponent’s future actions. In the Gift Exchange game the action

space is continuous; an opponent’s intentions can be observed from

the action they choose. In this paper we will explore the effect of

discretizing the action space of the Gift Exchange game. We will

describe the discretized Gift Exchange game and discuss how to

learn an optimal response to simple opponents. Then we will show

how the proper selection of a simple strategy can take advantage of

a learning opponent. We will present experimental results showing

the effect of various parameters on the optimal strategy.
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1 INTRODUCTION
Interacting with other self-interested agents is an important focus

of multiagent systems research [4, 6, 8, 19, 22, 23]. When deciding

how to act, it is necessary to calculate the immediate effects of each

action, the effect of each action on the game state, and the effect

each action will have on future behavior of the opponent. One

approach is to treat each interaction with the opponent indepen-

dently; no-regret learning does this, and is able to achieve a payoff

at least as good as the performance of the optimal constant strategy

against the observed sequence of opponent moves [7]. However,

this approach does not take into account the possibility that the

agent’s moves may affect future choices of the opponent. For exam-

ple, in the repeated Prisoner’s Dilemma the no-regret strategy is

to constantly defect [18], which performs poorly against strategies

like Tit-for-Tat.

On the other hand, if the agent’s actions may affect future oppo-

nent actions, it becomes considerably more difficult to determine

how to play. One approach would be to form a prior distribution
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over some set of possible opponents, and play optimally against that

prior distribution; if the possible opponents are described as finite

state machines, this is equivalent to solving a Partially Observable

Markov Decision Process (POMDP) [20]. However, specifying that

prior distribution and solving the problem itself are computationally

prohibitive for reasonably complex opponents.

Another way to play is to calculate a Nash equilibrium of the

game. If we assume a fixed number of repetitions, induction will

often lead to an equilibrium without cooperation, but if we assume

an indefinite number of repetitions the Folk Theorem tells us that

any individually rational outcome can be supported as an equi-

librium. These problems can be solved by augmenting the game

definition with discount factors and priors for the players, but again

this would be computationally expensive and difficult to specify.

In this paper we will look at strategies that take advantage of

the performance guarantees of the opponent’s strategy instead of

attempting to find an equilibrium or explicitly model the opponent.

We develop strategies for a game which is explicitly constructed to

trivialize the problems of determining the outcome of the agent’s

actions or the intended outcome of the opponent’s actions.

Our environment is a Gift Exchange game [10] in which two play-
ers take turns selecting outcomes, which provide payoffs (which

may be negative) to each player. There are several important prop-

erties of this game. First, interactions are isolated; a player’s choice

of action completely determines the immediate payoffs to the player

and its opponent, but has no further effect on the state of the game.

This means that agents do not need to track a game state; prior

interactions are only relevant in terms of how they affected the

agent’s model of the opponent, and the agent’s only concern when

selecting an action is the immediate payoff of the action and the ef-

fect of the action on the opponent’s state. Second, players take turns

acting, instead of acting simultaneously. This simplifies the analysis

because it means that players have complete information about the

state of the game when they act; there’s no need to model what the

opponent is currently doing. Finally, payoffs are observable—there

is no secret information for either player.

The main contribution of this paper is an extension of the Gift

Exchange game to discretize its action space and an analysis of

strategies for playing the discrete version of the game against dif-

ferent types of opponents.

2 RELATEDWORK
There is a large amount of work in multiagent systems on coop-

eration in general, and specifically on choosing one’s actions to

affect an opponent’s future actions. In this section we provide a

brief survey of that work.

The Gift Exchange game [10] is most similar to the Dictator [15]

game. Both games involve the active player choosing an outcome

https://doi.org/doi
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that cannot be affected by the opponent; however, the Gift Exchange

Game involves an element of social dilemma that is not usually

present in the Dictator game, and the Dictator game is not usually

a repeated game. In the Dictator game, one player is given an

initial endowment, which they may then choose to divide with the

other player in any proportion they choose (including the option of

keeping the entire endowment for themselves). The game-theoretic

analysis of the Dictator game is trivial—the dictator keeps the entire

endowment. People playing the dictator game do not generally play

the Nash equilibrium. The Dictator game has been extensively

studied to explore the factors that influence how people play it.

The Dictator game is generally played as a single shot game, but

one study has explored the effects on the second player when two

games are played in a row with players swapping roles [11]. In that

situation the second player is more likely to return the gift received

from the first player. Other factors that have been studied include

demographics, cultural factors, the value of the endowment, social

distance between the players, and how deserving the recipient is.

Attention has been focused on measuring how these factors affect

human play [13]. In contrast, our focus in the Gift Exchange Game

is on exploring reciprocation as a basis for non-equilibrium play.

The Automated Negotiating Agents Competition [3] pits negoti-

ation agents against one another. In each match two or more agents

take turns proposing outcomes from a space of possible outcomes,

which is selected on a per-match basis. If agents do not agree on

an outcome before the deadline is reached, each agent receives

its reserve value. In addition, in some matches there is a discount

factor to encourage agents to reach an agreement more rapidly.

Unlike in our environment, agents do not know their opponent’s

utility function—to play the game, they must simultaneously at-

tempt to estimate their opponent’s utility for each of the potential

outcomes and their opponent’s willingness to cooperate or make

concessions. Most agents designed for this competition focus on

opponent modeling; they attempt to predict which offers their op-

ponent will accept. In competition it has been found that the most

successful agents are generally tougher negotiators. This is a con-

sequence of the fact that agents generally reach some agreement

(which suggests that most agents are not too rigid). If the commu-

nity of agents frequently failed to reach an agreement, then more

generous agents would be favored. This game is more suited to

negotiation than the Gift Exchange Game because only the final

offer has an effect on the payoffs received by the agents. In the Gift

Exchange Game, being a tough negotiator imposes an immediate

opportunity cost, as the agent forgoes the chance to cooperate in

that round, and may need to pay a cost to punish the opponent for

rejecting the agent’s desired outcome.

Randomization can be used to generate strategies for the Re-

peated Prisoner’s Dilemma [16] which confine the outcome of the

game to a bounded region. The authors show how this approach

can be successful in a tournament, and also show good performance

of this strategy against a reinforcement learner. We use a similar

approach to achieve good performance against a learning opponent.

Instead of treating the problem of choosing a strategy in repeated

normal form games as a sequence of decisions, in [27] it is framed

as one player selecting a finite automaton to play for them, and

the other player selecting an automaton in response. The size of

the automata can be used to represent the bounded rationality

of the players. The paper describes how to compute an optimal

automaton for the first player to commit to. This is similar (but

more complex) to the strategies we have developed to play our Gift

Exchange game. We handle the problem of selecting an optimal

strategy by introducing a discount factor, while they handle it by

introducing limits on the complexity of the automata.

If the opponent is playing a finite automaton in a repeated normal

form game, the agent generally does not know the characteristics

of the automaton. It is possible to learn a stationary strategy for the

opponent using reinforcement learning, however the opponent may

not stick to a stationary strategy. This problem can be handled using

the R-MAX# algorithm [17] which can detect when the opponent

has deviated from the learned strategy and learn to best respond

to the new strategy. The strategies we have developed for the Gift

Exchange game are intended to take advantage of strategies like R-

MAX# [5]; it is easy to find the best response, but the best response

to the strategy is beneficial for the agent.

A modification of reinforcement learning is described in [14]; the

agent updates its policy to optimize performance against a learning

opponent instead of a static opponent. The authors show that agents

using this update rule are capable of learning to cooperate in the

Repeated Prisoner’s Dilemma. Furthermore, they show that when

the technique is applied again (i.e., the agent optimizes its policy

under the assumption that the opponent is updating its policy under
the assumption that the agent is a naive reinforcement learner), it

does not result in additional gains. In our work we do not explicitly

model the learning that agents do as they converge to a cooperative

outcome, but [14] suggests that it could be a successful approach.

An algorithm for repeated stochastic games, presented in [12],

uses lossy game abstraction [24] to reduce the state space of the

game and facilitate learning and adapting rapidly to a non-stationary

opponent. The algorithm in [9] reduces the problem to a multi-

armed bandit problem by generating a handful of expert strategies

to use in the repeated stochastic game. This approach simplifies the

underlying game to make it a matter of selecting the appropriate

expert strategy. The agent selects a strategy with the intent that

the opponent will play its part in the selected strategy, and enforce

compliance by punishing the opponent when it fails to comply. The

work on repeated stochastic games focuses more on the problem of

how to cooperate, rather than whether to cooperate.

To study cooperation in Markov games, in [21] a pair of games

are presented that have opportunities for cooperation, and a Deep

Q-Network is used to learn strategies for those games. By varying

parameters of the game, different strategies are learned, which can

be designated cooperate or defect according to the performance of

the strategy in self-play. The strategies developed implement coop-

eration or competition in the underlying Markov game, but they do

not attempt to reciprocate. This work approaches the problem of

cooperation from the other end—instead of starting from a simple

environment and looking at how to decide when to cooperate, they

start from a complex environment and look at learning how to

cooperate in the first place.

We have focused on agents interacting with opponents whose

goals are orthogonal to the agent’s goals. It is also interesting to con-

sider the problem of how to interact with an opponent that shares

the goals of the agent, but has not been designed to coordinate with

the agent [25]. If the opponent is able to learn by observing the
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agent, the agent must decide how to balance acting to further its

goals versus acting to teach the opponent a better strategy. This

problem is considered in two different contexts : a repeated normal-

form game (with both players sharing the same utility function) in

which the agent must find the most effective teaching sequence to

optimize performance against a bounded memory best-responding

opponent, and a shared multi-armed bandit problem where the

agent must decide when to pay a cost to demonstrate the optimal

choice to the opponent. The problems are similar to the problem

faced by an agent in the Gift Exchange game that is attempting to

manipulate its opponent—interacting with the opponent is simpler,

because the agent and the opponent have a shared utility function,

but the environment is more complex than the Gift Exchange game.

A recent survey [1] covers work done across a wide spectrum of

multi-agent systems in modelling opponents. We refer the reader

to it for approaches we have not covered here.

3 DISCRETIZING THE GIFT EXCHANGE
GAME

In the Gift Exchange game, agents take turns choosing actions,

where each action consists of a choice of outcome from a set of

potential outcomes. Each outcome is an assignment of (potentially

negative) payoffs to the agent and its opponent. In previous work

[10] the set of potential outcomes is the unit circle, where one

player receives the x-coordinate of the chosen point and the other

player receives the y-coordinate of the chosen point. This set of

choices allows for costly cooperation and places no limitations

on the ratios between payoffs that can be achieved in a single

choice. However, in many environments this level of precision is

not available. The Gift Exchange game can be easily modified to

present agents with a discrete set of choices, which changes the

dynamics of agents attempting to learn opponent models or take

advantage of a learning opponent.

Figure 1 shows a sample choice set for a discrete Gift Exchange

game. The options available for players are:

A The most beneficial option for the agent

B The most beneficial option for the opponent

C A cooperative outcome

D The most punishing option for the agent

E The most punishing option for the opponent

F A strictly competitive option for the agent

G A strictly competitive option for the opponent

The space of achievable outcomes is shown by the gray lines. The

space of pareto-optimal outcomes is shown by the green lines. Note

that there are no options between D and E because neither player

would choose an action that is better for their opponent and worse

for them than the maximally punishing option for their opponent.

Figure 2 shows a discrete Gift Exchange game with a much

smaller choice set. Each player has a preferred choice, and there is

a mutually punishing option as well. Unlike the first sample game

in Figure 1 there are no benefits to mutual cooperation, but the

punishing option creates the possibility for players to threaten their

opponent to get them to play their preferred option.

Any combination of points can form a set of possible payoffs for

a Gift Exchange game as long as they form a convex hull. A point

in the interior of the convex hull of possible payoffs would not be a

Figure 1: A sample choice set for a discrete Gift Exchange
game. The x-axis is the agent’s payoff and the y-axis is the
payoff of its opponent.

Figure 2: A choice set for a discrete Gift Exchange gamewith
more limited options. The x-axis is the agent’s payoff and
the y-axis is the payoff of its opponent.

rational choice for either player because regardless of that players

intent, they could fulfill it more effectively by choosing from points

on the convex hull.

3.1 Formal Definitions
A discrete Gift Exchange game is described by a set of two play-

ers P = {A,B} and a choice set U = {(uA,uB ) ∈ R
2} where the

points inU form a convex hull.

In round i the current player chooses an outcome ci = (ci,A, ci,B ) ∈
U with player A choosing in odd numbered rounds and player B
choosing in even numbered rounds. After each choice (ci,A, ci,B )
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playerA receives payoff ci,A and player B receives payoff ci,B . Note
that these payoffs may be negative, in which case they represent

a loss to that player. The game may be played for a fixed or an

indeterminate number of rounds. By convention we will assume

the agent is player A and the opponent is player B.
We will occasionally use the discretized perimeter choice setU ∗

for examples.U ∗ is a discretization of points on the perimeter of the

unit circle. For a given n divisible by 4,U ∗n contains all points of the

form (sin 2π i
n , cos 2π

i
n ) where i is any integer from 1 to n. For any

U ∗n , the maximally rewarding strategies for A and B will be (1, 0)

and (0, 1) respectively, and the maximally punishing strategies will

be (−1, 0) and (0,−1) respectively.

We define a history as a sequence of outcomes, h = {h1 . . .} with
hi ∈ U , where hi is the choice made in round i , hi,A is the payoff

assigned to player A and hi,B the payoff assigned to player B. We

define h:i as the subsequence of choices in h up to and including

round i and h−1 as the final choice in h for histories with finite

length. We defineH as the set of all possible histories, withHA ⊂ H
as the set of all possible histories of even length (including the

empty history), and HB ⊂ H as the set of all possible histories of

odd length. A will be the next player to choose an outcome after

histories in HA and B will be the next player to choose an outcome

after histories in HB .

A strategy s is a function that maps histories to outcomes; s(h) ∈
U is the outcome chosen by a player following strategy s after

observing history h. The set of all strategies for player A is SA :

HA → U , the set of functions mapping HA to U . Similarly, SB is

the set of all strategies for player B. The combination of strategy

sA ∈ SA for player A,and strategy sB ∈ SB will produce a specific

history Outcome(sA, sB ) ∈ H with the property that hi = sA(h:i−1)
when i is odd and hi = sB (h:i−1)when i is even. We refer to generic

strategies s ∈ SA∪SB = S when we do not wish to specify to which

player we are referring. Strategies that include randomization can

be represented as a probability distribution over SA or SB . The
outcome of two randomizing strategies is a distribution over H .

A strategy s is a constant strategy if s(h) = c ∈ U for some

constant c . A strategy is non-reactive if the choices it makes do

not depend on the past actions of the opponent; a strategy s is
non-reactive if lenдth(h) = lenдth(h′) =⇒ s(h) = s(h′). Note that
a non-reactive strategy is not necessarily stationary—it can change,

just not in response to opponent choices. A reactive strategy is one

that conditions its choices on the choices made by the opponent

in the past. Reactive strategies can be divided into those that de-

pend only on the most recent action taken by the opponent and

those that depend on the entire history of play. A strategy that

only depends on the most recent action is immediately reactive;
s is immediately reactive if s(h) = s(h′) whenever h and h′ have
the same length lenдth(h) = lenдth(h′) and the same last move

h−1 = h
′
−1
. A randomizing immediately reactive strategy makes its

choice at random according to a distribution determined by the

opponent’s last choice. A fixed immediately reactive strategy does

not use randomization.

The payoff of a history through time t can be described as the

sum of payoffs of the moves Payoff t (h) = (
∑t
i=1 hi,A,

∑t
i=1 hi,B ).

The average payoff is Payoff t (h) = (
∑t
i=1 hi,A/t ,

∑t
i=1 hi,B/t). In

games played for an indefinite period, where the stopping point

is unknown or there is no stopping point, it is trickier to evalu-

ate performance. Clearly the sum of the payoffs can diverge, so

we will generally use the limit of the average payoff or the av-

erage discounted payoff. The limit of the average payoff can be

easily calculated as Payoff∞(h) = limt→∞ Payoff t (h), but note
that there are histories for which that limit does not converge.

An example of a non-converging history is one that switches be-

tween playing (0, 1) and (1, 0) depending on whether ⌊log
10
i⌋ is

even or odd where i is the round. For this history average pay-

offs will oscillate between (.9, .1) and (.1, .9) and never converge.

Combinations of strategies that produce histories for which the

limit does not converge are not generally well-justified, as they

involve cycling between different choices infinitely often which is

not Pareto-optimal. The average discounted payoff is Payoff
δ
=

limt→∞(
∑t
i=1(1−δ )

i ×hi,A/t ,
∑t
i=1(1−δ )

i ×hi,B/t). The discount
factor, δ , describes the degree to which the agent discounts future

payoffs. It is often used to describe a situation in which there is a

fixed probability, δ of the game ending after the current round.

4 PLAYING AGAINST IMMEDIATELY
REACTIVE OPPONENTS

One advantage of the discrete version of the Gift Exchange game is

that it is easier to define specific classes of opponents and the best

responses to them. In this section we will discuss best responses

to opponents that only consider the previous choice of the agent

when making their choice under a variety of circumstances.

Opponents that are non-reactive are trivial to best-respond to.

The best response to a non-reactive opponent is to always select

the choice that maximizes the agent’s payoff.

Theorem 4.1. Given a non-reactive strategy sb ∈ SB , the strategy
sa (h) = argmaxu ∈U uA maximizes the payoff of player A.

Proof. Let h = Outcome(sa , sb ). The payoff of playerA through

round t is Payoff t,A(h) =
∑t
i=1 hi,A. This can be split into the

rounds where player A chose and the rounds where player B chose∑t/2
i=1 h2i−1,A +

∑t/2
i=1 h2i,A. which is equal to

∑t/2
i=1 s

′(h2i−2)A +∑t/2
i=1 s(h2i−1)A. The first sum is maximal by the definition of sa and

the second sum is constant because sb is a non-reactive strategy. □

If the opponent is playing a fixed immediately reactive strategy,

we consider these different goals:

Maximize average payoff with no time horizon. If the goal
is to maximize the average payoff with no time horizon

(Payoff∞(h)A), the agent should make every choice once to

learn the opponent strategy sB , and then play the constant

strategy that gives the best payoff s(h) = argmaxu ∈U uA +
sB (u)A. The order in which options are checked does not

matter because the goal is to maximize average payoff over

an infinite time horizon.

Maximize total payoff over a fixed horizon. If the opponent
is immediately reactive, and the goal is to maximize the total

payoff over some fixed time horizon that is much longer

than the total number of options available t >> |U |, then
the optimal strategy is similar, except that options should be

checked in descending order of uA, and no further options
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should be checked when the payoff of choosing the current

best option for the rest of the game is greater than the maxi-

mum possible payoff of the remaining unchecked options.

Let si : U
′
i → U be the incomplete function learned from

observing the opponent’s behavior up to round i whereU ′i
is the set of choices for which responses have been observed

up to round i . Letumax
i be the best observed option in round

i , umax
i = argmaxu ∈U ′i uA + si (u)A

Theorem 4.2. The optimal sequence of choices {u1,u2, ...,un }
to maximize the total payoff assuming a uniform distribution
over immediately reactive opponents is in descending order of
preference ui,A ≥ ui+1,A.

Proof. Sketch. Consider any two sequences that are identi-

cal except for two adjacent choices, C = {u1, ...u,u
′, ...un }

andC ′ = {u1, ...u
′,u, ...un }. Assume without loss of general-

ityuA > u ′A. When neitheru noru ′ is the maximizing choice,

the expected payoff of ordering guesses according to either

sequence is identical. When one of u and u ′ is the payoff
maximizing choice, the expected payoff of guessing u first is

higher because when the agent guesses u first the immedi-

ate payoff is higher, and the agent is able to rule out more

unchecked options. Therefore, the only sequence for which

the expected payoff cannot be improved is one in which

options are checked in descending order of preference. □

Maximize discounted average payoff. If the opponent is im-

mediately reactive and the goal is tomaximize the discounted

average payoff, then the agent should guess in descending or-

der of expected value E(uA + s(u)A), but stop guessing when
the expected payoff of guessing the next value is lower than

the value of choosing the best option found so far for the

rest of the game

umax
i,A +s(u

max
i )A

1−δ > ui+1,A + δE(s(ui+1,A))+
δ 2

1−δ E(max(umax
i,A + s(umax

i )A),ui+1,A + s(ui+1)A) where δ

is the discount factor of the agent. Note that the expectation

over opponent strategies can be uniform, but is not required

to be.

All the strategies described up to now have assumed that the

opponent is playing a fixed immediately reactive strategy. How-

ever the opponent may be using randomization. A randomizing

immediately reactive opponent will respond to an agent choice u
by drawing from a random distribution over immediately reactive

strategies, which is functionally identical to a multi-armed ban-

dit. Each choice of outcome u represents a separate arm, with a

payoff of uA + E(s(u)) where s is drawn from the opponent’s distri-

bution over strategies. A well-known algorithm for multi-armed

bandits is UCB [2], which we will use in this paper to play against

randomizing immediately reactive strategies.

5 TAKING ADVANTAGE OF LEARNING
OPPONENTS

There are a number of ways to take advantage of the strategies

described in the previous section that find a best-response to an

immediately reactive opponent. One method is to violate the as-

sumptions of the learning strategies which assume a fixed imme-

diately reactive opponent. An agent can take advantage of those

strategies by playing its initial responses to deceive the opponent

and then, once the opponent has settled on what it thinks is the

best response, switching to playing the choice that maximizes its

own payoff. A more interesting way to take advantage of learning

opponents is to play a strategy which follows the assumption of the

learning strategy, but is structured such that the best response to

that strategy is beneficial to the agent. Essentially, such a strategy is

using the constraints on the agent’s behavior to gain an advantage

over the opponent in a manner similar to a Stackelberg [26] leader.

If the opponent assumes the agent is playing an immediately

reactive strategy, we can consider these different cases:

Maximize average payoff vs. fixed strategy: If the opponent
is attempting to maximize its average payoff, then the best

immediately reactive strategy for the agent is the one that

maximizes the agent’s payoff subject to the constraint that

the opponent’s payoff is greater than the maximum amount

it can guarantee itself. Let umax
B ∈ U be the choice that max-

imizes the opponent’s payoff, and umin
B ∈ U be the choice

that minimizes the opponent’s payoff. Let u,u ′ ∈ U be the

choices that maximize uA +u
′
A subject to the constraint that

uB + u
′
B > umax

B + umin
B . Depending on the choices inU it

is possible that u = u ′; for example, if umax
B +umin

B = 0 and

U = {(1, 0), (−1, 0), (0, 1), (0,−1), (.7, .7), (.7,−.7), (−.7, .7)}
then u and u ′ will be (1, 0) and (.7, .7), but if we change (1, 0)
to (1, .1) then u = u ′ = (1, .1). u is the choice that the agent

would prefer; u ′ is the offer that the agent needs to make to

ensure that the opponent is better off accepting the deal. De-

fine the agent’s optimal strategy s as s(u) = u ′ and s(u ′) = u;
for any other choice v ∈ U let s(v) = argmaxv ′∈U v ′A sub-

ject to the constraint that vB + v
′
B < uB + u

′
B . s is a best

response to any opponent learning strategy that assumes

the agent is playing a fixed immediately reactive strategy.

As an example, consider the optimal fixed immediately re-

active strategy for an agent playing a Gift Exchange game

with discretized perimeter choice set U ∗n against a learning

opponent. The optimal strategy for the agent is:

sn (u) =


(cos π

2n , sin
π
2n ) i f u = (1, 0)

(1, 0) i f uB < 0 or u = (cos π
2n , sin

π
2n )

(uB ,uA) i f uA < 0

(uA,−uB ) otherwise

This strategy limits the opponent to receiving a payoff of 0

unless it chooses a preferred outcome for the agent in which

case it will receive an average payoff of
1

2
sin

π
2n .

Maximize discounted average payoff vs. fixed strategy: the
agent’s best strategy is constructed in a similar manner, ex-

cept that the preferred choice must be one of the choices the

opponent will check.

Maximize average payoff vs. randomizing strategy: If the
opponent assumes that the agent is playing a randomizing

immediately reactive strategy and is attempting to maximize

its average payoff, this allows the agent to improve its perfor-

mance by using a randomizing strategy. This is because the

ability to randomize allows the agent to make choices with

an expected payoff on the convex hull of the set of choices,
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which allows it to give the opponent a choice even more ben-

eficial to it. Given a choice setU we can construct a random-

izing immediately reactive strategy to take advantage of a

learning opponent as follows. Letumax
B +umin

B be the amount

the opponent can guarantee itself by always playing umax
B .

Let u∗ be the choice that maximizes uA subject to the con-

straint that uB >
umax
B +umin

B
2

. Let u∗′ be the choice adjacent
tou∗ on the convex hull that maximizesuA; if both neighbors
of u∗ have a lower payoff for the agent, then u∗′ = u∗. Pick a
probability p such that p ×u∗B + (1−p) ×u

∗′
B > umax

B +umin
B

Then play the following strategy: if the opponent plays u∗

play u∗ with probability p otherwise play u∗′, and if the op-

ponent does nŒİt play u∗ play argmaxu′∈U u ′A subject to

the constraint uB +u
′
B < u∗B (1+p)+u

∗′

B (1−p). This strategy
will ensure that the opponent’s best response is to play u∗

while maximizing the agent’s payoff.

Algorithm 1 Simulated Annealing Algorithm

1: generate a population of 10 candidates

2: σ ← .5 ▷ Level of noise to add

3: initialize n ▷ Number of choices

4: while σ > .05 do
5: for each candidate do
6: generate 8 perturbed candidates

7: end for
8: evaluate the perturbed candidates

9: keep the top 10

10: σ ← σ × .99
11: end while
12: return current population

13: function generateCandidate(n)

14: Strategies are represented as an array of values

15: the integer part indicates the base option to return

16: the fractional part indicates the probability of switching

17: to the next option

18: return an array of random values from 1 to n
19: end function
20: function perturbCandidate(candidate,σ )
21: Add gaussian noise with standard deviation σ to candidate

22: end function
23: function evaluateCandidate

24: return Payoff
10000
(Outcome(candidate,opponent))

25: end function

When the opponent is maximizing the average payoff against

a randomizing strategy, the optimal strategy for the agent gives

the opponent a payoff very slightly greater than the amount the

opponent can guarantee for itself. The closer the opponent’s payoff

is to the amount it can guarantee for itself, the better the agent’s

payoff is. However, the closer the opponent’s payoff is to the amount

it can guarantee itself, the longer it will take the opponent to learn

the optimal response. In infinitely repeated games this is irrelevant

because the agent’s average payoff will be

u∗A(1+p)+u
∗′
A(1−p)

2
, but in

finitely repeated games or games with discounting it is significant.

Figure 3: Strategies found using simulated annealing inU ∗
16

against a UCB opponent. The discount factors are 0.0, 0.01,
0.02, 0.04, and 0.08, from top to bottom. The shaded region
shows the 95% confidence interval.
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Figure 4: Performance of strategies found using simulated
annealing inU ∗

16
against a UCB opponent as the discount fac-

tor varies. The shaded region shows the 95% confidence in-
terval.

In a game that is not infinitely repeated we can use simulated an-

nealing (Algorithm 1) to find the optimal randomizing immediately

reactive strategy for a given opponent. A strategy is represented

by an array that describes the response to each opponent action.

The response of a strategy to a value is given as an index of the

value to return plus a probability of giving the opponent the next

higher amount. This can represent any randomizing immediately

reactive strategy that only randomizes between adjacent options.

This limitation is reasonable because randomizing between non-

adjacent options is inefficient—it will select points from the interior

of the convex hull of possible payoffs. Strategies are also limited to

choosing rational outcomes inU ∗n ; they will only assign themselves

a non-negative value. We do not restrict strategies more than this

because it is not clear that the form of an optimal strategy follows a

more strictly defined structure (and results of simulated annealing

do not suggest this).

We have used simulated annealing to find effective randomizing

immediately reactive strategies for the choice set U ∗. We look at

the effects of discount factor, number of choices in the choice set,

and the exploration factor of the opponent.

Figure 3 shows how the best-performing strategies vary as they

are optimized for different discount factors. When the discount

factor is 0 the strategy is extremely punitive and the opponent’s

best response is to give the agent .923; the agent will occasionally

reciprocate with a gift of 0.382 to the opponent. When the discount

factor increases, the agent will accept lower amounts from the

opponent, and punish non-compliant choices less severely. This

occurs because punishment is costly and with a high discount factor

the agent is unwilling to incur those upfront costs to coerce the

opponent into a better long-term strategy. Figure 4 shows how

the performance of the agent and a best-responding opponent is

affected by the discount factor. Note that as the discount factor

increases, the agent is offering the opponent a nearly equal split of

the potential payoff.

Figure 5 shows how the best-performing strategies vary as the

number of choices varies. Choices are evenly distributed around

the unit circle with 8, 16, or 32 choices. In this case, increasing

the number of choices allows the agent to be more precise in its

demands. All of the strategies punish at approximately the same

level. Strategies with access to more choices are able to be more

Figure 5: Strategies found using simulated annealing in U ∗
8
,

U ∗
16
, and U ∗

32
(from top to bottom) against a UCB opponent.

The shaded region shows the 95% confidence interval.

Figure 6: Performance of strategies found using simulated
annealing in inU ∗

8
,U ∗

16
, andU ∗

32
against a UCB opponent. The

shaded region shows the 95% confidence interval.

precise in the amount they demand from the opponent, but they

all demand about the same amount.

Figure 6 shows how the performance of the agent is affected

by the number of moves available. Since the discount factor is 0,
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the agent adopts a very greedy strategy. Increasing the number of

moves causes the agent’s payoff to go up slightly, but the effect

is not as large as that of the discount factor. Unlike the other pa-

rameters we have looked at, both the agent’s and the opponent’s

payoff increase as the number of moves rises; this implies that the

performance increase is due to more efficient cooperation.

Figure 7: Strategies found using simulated annealing inU ∗
16

against a UCB opponent with exploration factors 2.0, 1.0, 0.5,
and 0.25 (from top to bottom). The shaded region shows the
95% confidence interval.

Figure 7 shows how the best-performing strategies vary as the

opponent explores less. The level of exploration has the smallest

effect of all the parameters we have looked at. With higher levels,

the agent will select costly punitive choices more frequently, so

Figure 8: Performance of strategies found using simulated
annealing inU ∗

16
against a UCB opponent as the exploration

factor varies. The shaded region shows the 95% confidence
interval.

the optimal strategy is slightly more moderate in its demands of

the opponent. However, the effect is far smaller than the effect of

varying the discount factor of the agent. Figure 8 shows that as the

exploration of the opponent increases the performance of the agent

decreases while the performance of the opponent increases.

6 CONCLUSIONS
The discretized version of the Gift Exchange game provides a useful

structure to explore the problem of encouraging a self-interested

opponent to adopt preferred strategies. Although it is more compli-

cated to generate reciprocating strategies than in the continuous

version of the Gift Exchange game it is still possible, and the results

shown in Figure 6 suggest that a relatively low number of choices is

required for the game to provide opportunities to fully explore the

possibilities of a reciprocating strategy. Another advantage of the

discretized version over the continuous version is that it is easier to

define strategies that attempt to learn a best response to the oppo-

nent. If the opponent is assumed to be playing a fixed strategy, the

best response can be learned after |U | observations, and if the oppo-
nent is randomizing the UCB algorithm can be used to play against

immediately reactive strategies without further modification. In

this paper we showed how to create immediately reactive strategies

that are best responses to learning strategies. By varying parame-

ters of the game and the process of evaluation we looked at how

they affect the optimal immediately reactive strategy. Increasing

the number of choices increases the payoff of both players, sug-

gesting that it allows for more efficient cooperation. Increasing the

exploration factor of the learning opponent resulted in strategies

that are slightly less greedy, as the cost of punishing the opponent

becomes more significant. Increasing the discount factor of the

agent had the largest effect, with the opponent receiving almost as

much as the agent at high discount factors.
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