
Computing aQuasi-Perfect Stackelberg Equilibrium∗

Alberto Marchesi

Politecnico di Milano

Milan, Italy

alberto.marchesi@polimi.it

Gabriele Farina

Carnegie Mellon University

Pittsburgh, PA

gfarina@cs.cmu.edu

Christian Kroer

Carnegie Mellon University

Pittsburgh, PA

ckroer@cs.cmu.edu

Nicola Gatti

Politecnico di Milano

Milan, Italy

nicola.gatti@polimi.it

Tuomas Sandholm

Carnegie Mellon University

Pittsburgh, PA

sandholm@cs.cmu.edu

ABSTRACT
Equilibrium refinements are important in extensive-form (i.e., tree-
form) games, where they amend weaknesses of the Nash equilib-

rium concept by requiring sequential rationality and other benefi-

cial properties. One of the most attractive refinement concepts is

quasi-perfect equilibrium. While quasi-perfection has been studied

in extensive-form games, it is poorly understood in Stackelberg

settings—that is, settings where a leader can commit to a strategy—

which are important for modeling, for example, security games. In

this paper, we introduce the axiomatic definition of quasi-perfect
Stackelberg equilibrium. We develop a broad class of game pertur-

bation schemes that lead to them in the limit. Our class of per-

turbation schemes strictly generalizes prior perturbation schemes

introduced for the computation of (non-Stackelberg) quasi-perfect

equilibria. Based on our perturbation schemes, we develop a branch-

and-bound algorithm for computing a quasi-perfect Stackelberg

equilibrium. It leverages a perturbed variant of the linear program

for computing a Stackelberg extensive-form correlated equilibrium.

Experiments show that our algorithm can be used to find an ap-

proximate quasi-perfect Stackelberg equilibrium in games with

thousands of nodes.

KEYWORDS
Stackelberg equilibrium computation; Extensive-form games; Equi-

librium refinements

1 INTRODUCTION
The main solution concept in game theory, Nash equilibrium (NE),
may prescribe non-credible strategies in extensive-form (i.e., tree-
form) games (EFGs). To solve that problem, equilibrium refinements

have been proposed for such games [27]. Among the plethora of

NE refinements (see van Damme [32] for details), the quasi-perfect
equilibrium (QPE), proposed by Van Damme [31], plays a central

role, and it is considered one of the most attractive NE refinement

concepts, as argued, for example, by Mertens [22]. The rationale

behind the QPE concept is that every player, in every informa-

tion set, plays her best response to perturbed—that is, subject to

∗
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trembles—strategies of the opponents. Unlike the normal-form per-
fect equilibrium, the QPE guarantees that the strategies of the play-

ers are sequentially rational, and furthermore, quasi-perfection

implies normal-form perfection. Unlike the extensive-form perfect
equilibrium (EFPE), in a QPE every player (reasonably) assumes

that she will not make mistakes in the future, and this excludes

some unreasonable strategies [22]. Computation of NE refinements

has received extensive attention in the literature. In the two-player

case, Miltersen and Sørensen [24] provide algorithms for finding

a QPE, while Farina and Gatti [10] for finding an EFPE. In partic-

ular, Miltersen and Sørensen [24] show that a strict subset of the

QPEs can be found when the sequence form is subject to a specific

perturbation, while Farina and Gatti [10] do the same for the EFPE.

Iterative algorithms for such perturbed games in the zero-sum EFPE

setting were introduced by Kroer et al. [15] and Farina et al. [12].
1

In Stackelberg games, a leader commits to a (possibly mixed)

strategy first, and then a follower best responds to that strategy [33].
Stackelberg games have received significant attention in recent

years [6–9, 19] due to their applications, for example, in security

domains [1, 2, 30].

Work on equilibrium refinements in the context of Stackelberg
extensive-form games has only started recently. Akin to usual extensive-
form game refinements, Stackelberg equilibrium (SE) refinements

should guarantee both the optimality of the commitment off the

equilibrium path and some form of robustness against small trem-

bles of the opponent.

To our knowledge, there is only one prior study of refinements

for Stackelberg extensive-form games [13]. They characterize a

set of SE refinements based on what solutions can be obtained

by imposing a perturbation scheme on the game—where players

tremble onto suboptimal strategies with some small probabilities—

and taking the limit as the trembling probability approaches zero.

They prove that, for any perturbation scheme, all the limit points

of sequences of SEs in a perturbed game are SEs of the original,

unperturbed game. Interestingly, they prove that when restricting

1Normal-form proper equilibrium is a refinement of QPE [31], but it has drawbacks:

(1) it requires players to assume a very specific structure on trembles which is not

necessarily well-motivated, (2) the minimum tremble magnitudes depend on the action

probabilities, which begets additional computational challenges, and (3) it is unknown

whether it can be represented via perturbation schemes, even in the non-Stackelberg

setting. For the zero-sum case, Miltersen and Sørensen [23] show a polynomial-time

approach using the sequence form, but it is based on solving a large (possibly linear in

game-size) number of LPs, and thus may not be practical. For the general-sum case, it is

not even known whether the sequence form can be applied; the only known approach

relies on conversion to normal form—which causes an exponential blow-up—and then

applying a pivoting algorithm [29].
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attention to the common tie-breaking rules for the follower (strong
SE assumes the follower breaks ties in the best way for the leader

and weak SE assumes the follower breaks tie in the worst way for

the leader), this is no longer the case. Their approach does not

start from a game-theoretic, axiomatic definition of the refinement

concept. As we show in this paper, their approach captures only a

strict subset of the solutions that are consistent with our natural

game-theoretically defined refinement concept. One way to view

this is that their operational definition is deficient in that it does not

characterize all the solutions that are consistent with the natural,

axiomatic definition of the refinement concept. Another view is that

they have an operational definition and we provide a generalization.

In terms of complexity, they prove that finding any SE is NP-
hard. (Hardness had previously been proven for finding a strong

SE [18].) Therefore, finding any SE refinement is also NP-hard.

1.1 Our Contributions
In this paper, we formally define the quasi-perfect Stackelberg equi-
librium (QPSE) refinement game theoretically in the same axiomatic

fashion as QPE was defined for non-Stackelberg games [31]. As in

the case of QPEs, our definition is based on a set of properties of

the players’ strategies, and it cannot be directly used to search for

a QPSE. Subsequently, we define a class of perturbation schemes

for the sequence form such that any limit point of a sequence

of SEs in a perturbed game is a QPSE. This class of perturbation

schemes strictly includes those used to find a QPE by Miltersen

and Sørensen [24]. Then, we extend the algorithm by Čermák et al.

[5] to the case of QPSE computation. We derive the corresponding

mathematical program for computing a Stackelberg extensive-form
correlated equilibrium (SEFCE) when a perturbation scheme is in-

troduced and we discuss how the individual steps of the algorithm

change. In particular, the implementation of our algorithm is much

more involved, requiring the combination of branch-and-bound

techniques with arbitrary-precision arithmetic to deal with small

perturbations. This does not allow a direct application of off-the-

shelf solvers. Finally, we experimentally evaluate the scalability of

our algorithm.

2 PRELIMINARIES
Using standard notation [28], a Stackelberg extensive-form game
(SEFG) of imperfect information is a tuple (N ,H ,Z,A, ρ, χ ,C,u,I).
N = {ℓ, f } is the set of players, the leader and the follower.H =

Hc ∪ Hℓ ∪ Hf is the set of nonterminal nodes, where Hc is the

set of chance nodes, whileHℓ andHf are the sets of leader’s and

follower’s decision nodes, respectively. Z is the set of terminal

nodes. A = Ac ∪ Aℓ ∪ Af is the set of actions, where Ac con-

tains chance moves, while Aℓ and Af are the sets of leader’s and

follower’s actions, respectively. ρ : H → 2
A

is the action function

that assigns to each nonterminal node a set of available actions.

χ : H × A → H ∪ Z is the successor function that defines the

node reached when an action is performed in a nonterminal node.

C : H ∪Z → [0, 1] assigns each node with its probability of being

reached given chance moves. u = {uℓ ,uf }, where uℓ ,uf : Z → R
specify leader’s and follower’s payoffs, respectively, in each termi-

nal node. Finally, I = {Iℓ ,If }, where Iℓ and If define partitions

ofHℓ andHf , respectively, into information sets, that is, groups

of nodes that are indistinguishable by the player. For every infor-

mation set I ∈ Ii and nodes h, ˆh ∈ I , it must be the case that

ρ(h) = ρ( ˆh) = A(I ), otherwise player i would be able to distinguish

the two nodes. As usual, w.l.o.g., we assume that each action a ∈ A
belongs to only one set A(I ).

We focus on perfect-recall SEFGs in which no player forgets

what she did or knew in the past, that is, for every i ∈ N and

I ∈ Ii , all nodes belonging to I share the same player i’s moves

on their paths from the root. Thus, we can restrict the attention to

behavioral strategies [17], which define, for every player i ∈ N and

information set I ∈ Ii , a probability distribution over the actions

A(I ). For i ∈ N , let πi ∈ Πi be a player i’s behavioral strategy, with
πia denoting the probability of playing action a ∈ Ai . Overloading

notation, we use ui as if it were defined over strategies instead of

terminal nodes. Specifically, ui (πℓ ,πf ) is player i’s expected utility

when πℓ ∈ Πℓ and πf ∈ Πf are played.

Perfect-recall SEFGs admit an equivalent representation called

the sequence form [25, 34]. Every node h ∈ H ∪ Z defines a se-
quence σi (h) for player i ∈ N , which is the ordered set of player

i’s actions on the path from the root to h. Let Σi be the set of

player i’s sequences. As usual, let σ∅ ∈ Σi be a fictitious ele-

ment representing the empty sequence. In perfect-recall games,

given an information set I ∈ Ii , for any pair of nodes h, ˆh ∈ I

it holds σi (h) = σi ( ˆh) = σi (I ). Given σi ∈ Σi and a ∈ A(I ) with
I ∈ Ii : σi = σi (I ), we denote as σia the extended sequence ob-

tained by appending a to σi . Moreover, for any pair σi , σ̂i ∈ Σi ,
we write σ̂i ⊑ σi whenever σ̂i is a prefix of σi , that is, σi can be

obtained by extending σ̂i with a finite number of actions. Given

σi ∈ Σi , we also let Ii (σi ) be the information set I ∈ Ii : σi = σi (I )a
for some a ∈ A(I ). In the sequence form, a strategy, called a real-
ization plan, assigns each sequence with its probability of being

played. For i ∈ N , let ri ∈ Ri be a player i’s realization plan. In

order to be well-defined, a realization plan ri must be such that

ri (σ∅) = 1 and, for I ∈ Ii , ri (σi (I )) =
∑
a∈A(I ) ri (σi (I )a). Finally,

letting Σ = Σℓ × Σf be the set of sequence pairs σ = (σℓ ,σf ), over-
loading notation, ui : Σ → R is player i’s utility function in the

sequence form, with ui (σ ) =
∑
h∈Z:σℓ (h)=σℓ∧σf (h)=σf ui (h)C(h).

Moreover, we also use ui as if it were defined over realization plans.

Formally, ui (rℓ , rf ) =
∑
σ ∈Σ ui (σ )rℓ(σℓ)rf (σf ).

The sequence form is usually expressed with matrix notation as

follows. Player i’s utility function is a |Σℓ | × |Σf | matrix Ui whose
entries are the utilitiesui (σ ), for σ ∈ Σ. Constraints defining ri ∈ Ri
are expressed as Firi = fi , where: Fi is a (|Ii | + 1) × |Σi | matrix,

fi ∈ R |Ii |+1
, and, overloading notation, ri ∈ R |Σi | is a vector

representing ri . Specifically, introducing a fictitious information

set I∅ , the entry of Fi indexed by (I∅,σ∅) is 1, and, for I ∈ Ii and

σi ∈ Σi , the entry indexed by (I ,σi ) is −1 if σi = σi (I ), while it
is 1 if σi = σi (I )a for some a ∈ A(I ). Fi is zero everywhere else.

Moreover, f Ti = (1 0 · · · 0). Finally, given rℓ ∈ Rℓ and rf ∈ Rf , we

can write ui (rℓ , rf ) = r
T
ℓ
Uirf .

In perfect-recall games, behavioral strategies and realization

plans are equally expressive. Given ri ∈ Ri , we obtain an equivalent

πi ∈ Πi by setting, for all I ∈ Ii and a ∈ A(I ), πia =
ri (σi (I )a)
ri (σi (I ))

when
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ri (σi (I )) > 0, while πia can be any otherwise. Similarly, πi ∈ Πi
has an equivalent ri ∈ Ri with ri (σi ) =

∏
a∈σi πia for all σi ∈ Σi .

2

The solution concept associated with SEFGs is the SE. An SEFG

may have many SEs, depending on the leader’s assumption on how

the follower breaks ties among multiple best responses. A leader’s

strategy is part of an SE if it is optimal for some tie-breaking rule
of the follower. Letting BRΓ(πℓ) = arg maxπf ∈Πf uf (πℓ ,πf ) be the

set of follower’s best responses to πℓ ∈ Πℓ in an SEFG Γ, we have
the following formal definition of SE.

3

Definition 2.1. Given an SEFG Γ, (πℓ ,πf ) is an SE of Γ if πf ∈

BRΓ(πℓ) and, for all π̂ℓ ∈ Πℓ , there exists π̂f ∈ BRΓ(π̂ℓ) such that

uℓ(πℓ ,πf ) ≥ uℓ(π̂ℓ , π̂f ).

Many papers on SEs focus on strong SEs (SSEs), which assume

that the follower breaks ties in favor of the leader.

Definition 2.2. Given an SEFG Γ, (πℓ ,πf ) is an SSE of Γ if πf ∈

BRΓ(πℓ) and, for all π̂ℓ ∈ Πℓ and π̂f ∈ BRΓ(π̂ℓ), it holdsuℓ(πℓ ,πf ) ≥
uℓ(π̂ℓ , π̂f ).

Finally, SEs and SSEs can be defined analogously for SEFGs in

sequence form (using the equivalence between behavioral strategies

and realization plans).

3 DEFINITION OF QUASI-PERFECT
STACKELBERG EQUILIBRIM

In this section, we introduce QPSEs, which refine SEs in SEFGs

using an approach resembling that adopted by Van Damme [31]

for defining QPEs in EFGs.

First, we provide needed additional notation.We say that πi ∈ Πi
is completely mixed if πia > 0 for all a ∈ Ai . Given two information

sets I , Î ∈ Ii , we write I ⪰ Î whenever Î follows I , i.e., there exists a
path from h ∈ I to ˆh ∈ Î . We assume I∅ ⪰ Î for all Î ∈ Ii such that

there is no I , Î ∈ Ii : I ⪰ Î . In perfect-recall games, ⪰ is a partial

order over Ii ∪ {I∅}. Given πi , π̂i ∈ Πi and I ∈ Ii ∪ {I∅}, πi
/
I π̂i

is equal to π̂i at all Î ∈ Ii : I ⪰ Î , while it is equal to πi everywhere
else. Moreover, for I ∈ Ii , we write πi =I π̂i if πia = π̂ia for

all a ∈ A(I ). Finally, given completely mixed strategies πℓ ∈ Πℓ ,

πf ∈ Πf and I ∈ Ii , ui, I (πℓ ,πf ) denotes player i’s expected utility

given that I has been reached and strategies πℓ and πf are played.

Next, we introduce a fundamental building block: the idea of

follower’s best response at an information set I ∈ If . Intuitively,

πf is an I -best response to πℓ whenever playing as prescribed by

πf at the information set I is part of some follower’s best response

to πℓ in the game following I , given that I has been reached during

play. Formally:

Definition 3.1. Given an SEFG Γ, a completely mixed πℓ ∈ Πℓ ,

and I ∈ If , we say that πf ∈ Πf is an I -best response to πℓ , written
πf ∈ BRI (πℓ), if the following holds:

max

π̂f ∈Πf :

πf =I π̂f

uf , I

(
πℓ ,πf

/
I π̂f

)
= max

π̂f ∈Πf
uf , I

(
πℓ ,πf

/
I π̂f

)
.

2
Here, the equivalence is in terms of probabilities that the strategies induce on terminal

nodes, i.e., it is realization equivalence.
3
In this paper, we define SEs following a characterization introduced by Farina et al. [13]

(Lemma 2 in their paper).

For i ∈ N and πi ∈ Πi , let {πi,k }k ∈N be a sequence of completely

mixed player i’s strategies with πi as a limit point. We are now

ready to define the refinement concept. In words, in a QPSE, the

leader selects an optimal strategy to commit to in all information

sets, given that the follower best responds to it at every information

set, following some tie-breaking rule. Specifically, point (ii) in Defi-

nition 3.2 ensures that the leader’s commitment is optimal also in

those information sets that are unreachable in absence of players’

errors. Notice that the leader only accounts for follower’s future

errors, while the follower assumes that only the leader can make

mistakes in future. This is in line with the idea underlying QPEs in

EFGs [31].
4

Definition 3.2. Given an SEFG Γ, (πℓ ,πf ) is a quasi-perfect Stack-
elberg equilibrium (QPSE) of Γ if there exist sequences {πi,k }k ∈N,
defined for every i ∈ N and πi ∈ Πi , such that:

(1) πf ∈ BRI (πℓ,k ) for all I ∈ If ;

(2) for all I ∈ Iℓ ∪ {I∅} and π̂ℓ ∈ Πℓ , there exists π̂f ∈ Πf :

π̂f ∈ BRÎ (πℓ,k
/
I π̂ℓ,k ) for all Î ∈ If , with:

uℓ

(
πℓ,k

/
Iπℓ ,πf ,k

)
≥ uℓ

(
πℓ,k

/
I π̂ℓ , π̂f ,k

)
. (1)

As with SEs, we introduce the strong version of QPSEs.
5

Definition 3.3. Given an SEFG Γ, (πℓ ,πf ) is a quasi-perfect strong
Stackelberg equilibrium (QPSSE) of Γ if there exist {πi,k }k ∈N, de-
fined for every i ∈ N and πi ∈ Πi , such that:

(1) πf ∈ BRI (πℓ,k ) for all I ∈ If ;

(2) for all I ∈ Iℓ ∪ {I∅}, π̂ℓ ∈ Πℓ , and π̂f ∈ Πf : π̂f ∈

BRÎ (πℓ,k
/
I π̂ℓ,k ) for all Î ∈ If , Equation (1) holds.

As we will show in Section 4, QPSEs are refinements of SEs, that

is, any QPSE is also an SE.

4 FAMILY OF PERTURBATION SCHEMES FOR
QPSE

We now introduce a family of perturbation schemes for SEFGs in
sequence form that satisfies the following fundamental property:

limits of SEs in perturbed sequence-form SEFGs are QPSEs of the
original unperturbed SEFGs as the magnitude of the perturbation
goes to zero. In addition to being theoretically relevant, this result

enables us to design an algorithm for computing QPSEs in SEFGs

(Section 7).

Definition 4.1 (ξ -perturbation scheme). Given an SEFG Γ and i ∈
N , let ξi : (0, 1] × Σi → R

+
be a function that maps a perturbation

magnitude ϵ ∈ (0, 1] and a sequence σi ∈ Σi to a positive lower-

bound ξi (ϵ,σi ) on the probability of playing σi such that:

(1) ξi (ϵ,σi ) is a polynomial in ϵ , for all σi ∈ Σi ;
(2) lim

ϵ→0
+
ξi (ϵ,σi ) = 0, for all σi ∈ Σi \ {σ∅};

(3) lim

ϵ→0
+

ξi (ϵ,σi (I )a)

ξi (ϵ,σi (I ))
= 0, for all I ∈ Ii ,a ∈ A(I ).

4
Van Damme [31] defines a QPE of an n-player extensive-form game as a strategy

profile (πi )i∈N obtained as a limit point of a sequence of completely mixed strategy

profiles {(πi,k )i∈N }k∈N such that πi ∈ BRI ((πj,k )j,i∈N ) for all i ∈ N and I ∈ Ii .
5
Since Equation (1) must hold for every π̂ℓ ∈ Πℓ and π̂f ∈ Πf : π̂f ∈

BRÎ (πℓ,k
/
I π̂ℓ,k ) for all Î ∈ If , Definition 3.3 assumes that the follower breaks

ties in favor of the leader.
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Then, a ξi -perturbation scheme for Ri is a function ϵ 7→ Ri (ϵ)
defined over ϵ ∈ (0, 1] in which Ri (ϵ) is the set of all ri ∈ Ri
such that ri (σi ) ≥ ξi (ϵ,σi ) for all σi ∈ Σi .

In words, the lower-bounds on sequence probabilities enjoy the

following properties: (i) they are polynomials in the variable ϵ ;
(ii) they approach zero as ϵ goes to zero; and (iii) ξi (ϵ,σi (I )a) ap-
proaches zero faster than ξi (ϵ,σi (I )).

We denote by (Γ, ξℓ , ξf ) a ξ -perturbed SEFGwith ξi -perturbation
schemes. We let Γ(ϵ) be a particular sequence-form ξ -perturbed
game instance obtained from Γ by restricting each set of realization

plans Ri to be Ri (ϵ). We denote by ri (ϵ) any realization plan in

Ri (ϵ), and we let ξi (ϵ) ∈ R
|Qi |

be a vector whose components are

the lower-bounds ξi (ϵ,σi ). We denote by r̃i (ϵ) = ri (ϵ) − ξi (ϵ) the
residual of ri (ϵ), which represents the part of player i’s strategy
that is not fixed by the perturbation.

6

Next, we state our main result about sequences of SEs in ξ -
perturbed games. We postpone the proof to Section 6.

Theorem 4.2. Given a ξ -perturbed SEFG (Γ, ξℓ , ξf ), let {ϵk }k ∈N →

0 and let {(rℓ(ϵk ), rf (ϵk ))}k ∈N be a sequence of SEs in Γ(ϵk ). Then,
any limit point (πℓ ,πf ) of the sequence {(πℓ,k ,πf ,k )}k ∈N is a QPSE
of Γ, where (πℓ,k ,πf ,k ) are equivalent to (rℓ(ϵk ), rf (ϵk )) for all
k ∈ N.

Theorem 4.2 also allows us to conclude the following, as a con-

sequence of Theorem 1 of Farina et al. [13].

Corollary 4.3. Any QPSE of an SEFG Γ is an SE of Γ.

Retirements (ii)-(iii) in Definition 4.1 cannot be removed:

Observation 1. There are ξ -perturbed SEFGs (Γ, ξℓ , ξf ) with ξi -
perturbation schemes that violate point (ii) or (iii) in Definition 4.1
for which Theorem 4.2 does not hold.

Proof. Consider the SEFG in Figure 1bwith ξℓ(ϵ,a
1

ℓ
) = ξℓ(ϵ,a

2

ℓ
) =

ϵ and ξℓ(ϵ,a
2

ℓ
a3

ℓ
) = ξℓ(ϵ,a

2

ℓ
a4

ℓ
) = ϵ

3
, which violates requirement

(iii) in Definition 4.1. Clearly, any SE of Γ(ϵ) requires rℓ(ϵ,a
1

ℓ
) = 1−ϵ ,

rℓ(ϵ,a
2

ℓ
) = ϵ , rℓ(ϵ,a

2

ℓ
a3

ℓ
) = ϵ

3
, and rℓ(ϵ,a

2

ℓ
a4

ℓ
) = 2ϵ

3
. Thus, any limit

point of a sequence of SEs has πℓ(a
3

ℓ
) = 1

3
and πℓ(a

4

ℓ
) = 2

3
, which

cannot be the case in a QPSE of Γ, as the leader’s optimal strategy

at ℓ.2 is to play a4

ℓ
. As for requirement (ii), we can build a similar

example by setting ξℓ(ϵ,a
2

ℓ
) = 1

3
. □

`.1

`.2

2, 0

a3`

1, 1

a1f

0, 0

a2f

a4`

a1`

0, 0

a1f

1, 1

a2f

a2`

f.1

(a)

`.1

2, 0

a1`

`.2

0, 0

a1f

1, 1

a2f

a3`

1, 0

a1f

1, 1

a2f

a4`

a2`

f.1

(b)

Figure 1: Examples SEFGs.

6
We assume without loss of generality that Γ(ϵ ) is well-defined, that is, each set Ri (ϵ )
is non-empty for every ϵ ∈ (0, 1].

Miltersen and Sørensen [24] introduced the idea of perturbing

sequence-form EFGs in order to find a QPE. Our perturbation

scheme generalizes theirs, where ξi (ϵ,σi ) = ϵ |σi | for all σi ∈

Σi \ {σ∅}, with |σi | being the number of actions in σi . There
are games where our perturbation captures QPSEs that are not
obtainable with theirs. For instance, in the SEFG in Figure 1a,

(πℓ ,πf ), with πℓ(a
1

ℓ
) = πℓ(a

3

ℓ
) = 1, πℓ(a

2

ℓ
) = πℓ(a

4

ℓ
) = 0, and

πf (a
1

f ) = πf (a
2

f ) =
1

2
, is a QPSE that cannot be obtained with their

perturbation scheme while it is reachable by setting ξℓ(ϵ,a
2

ℓ
) = ϵ2

.

We observe that (πℓ ,πf ) is also a QPE when we look at the game

as an EFG without commitment; this shows that our perturbation

scheme generalizes theirs also for QPEs.

Finally, when restricting the attention to SSEs, one can state the

following: limits of SSEs in ξ -perturbed games are QPSSEs of the

unperturbed game. This is made formal by Theorem 4 in [20].

5 BEST RESPONSES IN ξ -PERTURBED GAMES
We now study properties of the follower’s best responses to the

leader’s strategy in ξ -perturbed games. These properties will be

useful for proving our results later in the paper.

In the following, letting Σi (a) = {σi ∈ Σi | a ∈ σi } for all a ∈

Ai , Σi (I ) =
⋃
a∈A(I ) Σi (a) denotes player i’s sequences that pass

through information set I ∈ Ii . For ease of presentation, given I ∈
Ii , дi, I (rℓ , rf ) =

∑
σ ∈Σ:σi ∈Σi (I ) ui (σ )rℓ(σℓ)rf (σf ) denotes player

i’s expected utility contribution from terminal nodes reachable

from I . Finally, for I ∈ Ii , let Ri (I ) ⊆ Ri be the set of ri ∈ Ri :

ri (σi (I )) = 1, while, for a ∈ A(I ), Ri (a) ⊆ Ri (I ) is the set of ri ∈ Ri :

ri (σi (I )a) = 1.

LetBRΓ(ϵ )(rℓ(ϵ)) = arg maxrf (ϵ )∈Rf (ϵ ) uf (rℓ(ϵ), rf (ϵ)) be the set

of follower’s best responses to rℓ(ϵ) ∈ Rℓ(ϵ) in Γ(ϵ). The next lemma

gives a mathematical programming formulation of the follower’s

best-response problem in Γ(ϵ).

Lemma 5.1. For every rℓ(ϵ) ∈ Rℓ(ϵ), rf (ϵ) ∈ BRΓ(ϵ )(rℓ(ϵ)) if and
only if r̃f (ϵ) is optimal for Problem P(ϵ) below.

P(ϵ) :

{
max

r̃f
rℓ(ϵ)

TUf r̃f

s.t. Ff r̃f = ff − Ff ξf (ϵ), r̃f ≥ 0.

All omitted proofs are in [20].

The dual of Problem P(ϵ) above is as follows.

Proposition 5.2. For rℓ(ϵ) ∈ Rℓ(ϵ), Problem D(ϵ) below is the
dual of Problem P(ϵ), where vf ∈ R |If |+1 is the vector of dual
variables.

D(ϵ) :


min

vf

(
ff − Ff ξf (ϵ)

)T
vf

s.t. FTf vf ≥ UT
f rℓ(ϵ).

(2a)

(2b)

Remark 1. Constraints (2b) in ProblemD(ϵ) defined above ensure
that, for every I ∈ If and a ∈ A(I ), we have

vf , I ≥
∑

σ ∈Σ:σf =σf (I )a

uf (σ )rℓ(ϵ,σℓ) +
∑

Î ∈If :σf (Î )=σf (I )a

vf , Î . (3)

The optimal solutions to Problem D(ϵ) enjoy important prop-

erties that are stated in the following lemmas. The first one says

that, in an optimal solution, each variable vf , I must equal the max-

imum possible expected utility the follower can achieve following
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information set I ∈ If . The second lemma says that if an optimal

solution to Problem D(ϵ) satisfies Constraint (3) with equality for

an information set I ∈ If and an action a ∈ A(I ), then playing a at

I is optimal in the game following I .

Lemma 5.3. For every rℓ(ϵ) ∈ Rℓ(ϵ), if v∗f ∈ R |If |+1 is optimal
for Problem D(ϵ), then for every I ∈ If :

v∗f , I = max

r̂f ∈Rf (I )
дf , I (rℓ(ϵ), r̂f ). (4)

Lemma 5.4. For every rℓ(ϵ) ∈ Rℓ(ϵ), I ∈ If , and a ∈ A(I ), if Con-
straint (3) holds with equality in an optimal solution to ProblemD(ϵ),
then

max

r̂f ∈Rf (a)
дf , I (rℓ(ϵ), r̂f ) = max

r̂f ∈Rf (I )
дf , I (rℓ(ϵ), r̂f ). (5)

Now we are ready to prove a fundamental property of the fol-

lower’s best responses in ξ -perturbed game instances Γ(ϵ). Intu-
itively, in a perturbed game instance, the follower best responds

playing sequence σ (If )a with probability strictly greater than its

lower-bound ξf (ϵ,σf (I )a) only if playing a is optimal in the game

following I . Theorem 5.5 formally expresses the idea that, in a per-

turbed game instance Γ(ϵ), when the follower decides how to best

respond to a leader’s commitment in a given information set, she

does not take into account her future trembles, but only opponents’

ones.

Theorem 5.5. Given rℓ(ϵ) ∈ Rℓ(ϵ), rf (ϵ) ∈ BRΓ(ϵ )(rℓ(ϵ)), I ∈ If ,
and a ∈ A(I ), if rf (ϵ,σf (I )a) > ξf (ϵ,σf (I )a), then

max

r̂f ∈Rf (a)
дf , I (rℓ(ϵ), r̂f ) = max

r̂f ∈Rf (I )
дf , I (rℓ(ϵ), r̂f ).

Proof. By Lemma 5.1, rf (ϵ) ∈ BRΓ(ϵ )(rℓ(ϵ)) if and only if r̃f (ϵ) =
rf (ϵ) − ξf (ϵ) is optimal for Problem P(ϵ). By applying the com-

plementarity slackness theorem to Problems P(ϵ) and D(ϵ) we

have that, if r̃f (ϵ) and v∗f ∈ R |If |+1
are optimal, then, when-

ever r̃f (ϵ,σf (I )a) > 0, that is, rf (ϵ,σf (I )a) > ξf (ϵ,σf (I )a), Con-
straint (3) for information set I and action amust hold with equality,

which, by Lemma 5.4, yields Equation (5). □

6 LIMITS OF SES IN ξ -PERTURBED GAMES
ARE QPSES OF THE UNPERTURBED GAMES

Here, we prove Theorem 4.2. First, we introduce two lemmas.

The first provides a characterization of I -best responses in terms

of sequence form. Intuitively, a follower’s strategy πf is an I -best
response to πℓ if and only if it places positive probability only on

actions a ∈ A(I ) that are part of some best response of the follower

below information set I .

Lemma 6.1. Given an SEFG Γ, a completely mixed πℓ ∈ Πℓ and
I ∈ If , πf ∈ BRI (πℓ) if for every a ∈ A(I ):

πia > 0 =⇒ max

r̂f ∈Rf (a)
дf , I (rℓ , r̂f ) =max

r̂f ∈Rf (I )
дf , I (rℓ , r̂f ),

where rℓ ∈ Rℓ is equivalent to πℓ .

The next lemma shows that any limit point of a sequence of

follower’s best responses in ξ -perturbed games is a follower’s best

response at every information set in Γ.

Lemma 6.2. Given a ξ -perturbed SEFG (Γ, ξℓ , ξf ), let {ϵk }k ∈N →

0 and let {(rℓ(ϵk ), rf (ϵk ))}k ∈N be a sequence of realization plans in
Γ(ϵk ) with rf (ϵk ) ∈ BRΓ(ϵk )(rℓ(ϵk )). Then, any limit point (πℓ ,πf )
of {(πℓ,k ,πf ,k )}k ∈N is such that, eventually, πf ∈ BRIf (πℓ,k ) for
all I ∈ If , where (πℓ,k ,πf ,k ) are equivalent to (rℓ(ϵk ), rf (ϵk )) for
all k ∈ N.

Finally, we can prove Theorem 4.2.

Proof of Theorem 4.2. First, since rf (ϵk ) ∈ BRΓ(ϵk )(rℓ(ϵk ))
for all k ∈ N, Lemma 6.2 allows us to conclude that requirement (i)

in Definition 3.2 holds. Therefore, in order to prove Theorem 4.2, we

need to show that requirement (ii) holds as well. For contradiction,

suppose that point (ii) does not hold, that is, no matter how we

choose sequences {πi,k }k ∈N, for i ∈ N and πi ∈ Πi , there is an

information set I ∈ Iℓ ∪ {I∅} and a leader’s strategy π̂ℓ ∈ Πℓ such

that, for every π̂f ∈ Πf : π̂f ∈ BRÎ (πℓ,k
/
I π̂ℓ,k ) for all Î ∈ If , we

have:

uℓ(πℓ,k
/
Iπℓ ,πf ,k ) < uℓ(πℓ,k

/
I π̂ℓ , π̂f ,k ).

By continuity, there must exist an index
¯k ∈ N such that, for all

k ∈ N : k ≥ ¯k , the following holds:

uℓ(πℓ,k
/
Iπℓ,k ,πf ,k ) < uℓ(πℓ,k

/
I π̂ℓ,k , π̂f ,k ).

Moreover, uℓ(πℓ,k
/
Iπℓ,k ,πf ,k ) = uℓ(πℓ,k ,πf ,k ). Let sequence

{π̂ℓ,k }k ∈N be such that r̂ℓ(ϵk ) ∈ Rℓ(ϵk ) for all k ∈ N, where each

realization plan r̂ℓ(ϵk ) is equivalent to the strategy πℓ,k
/
I π̂ℓ,k .

This is always possible since requirement (iii) in Definition 4.1 is

satisfied. Consider a sequence {(r̂ℓ(ϵk ), r̂f (ϵk )}k ∈N with r̂f (ϵk ) ∈

BRΓ(ϵk )(r̂ℓ(ϵk )), and let {(πℓ,k
/
I π̂ℓ,k , π̂f ,k )}k ∈N be a sequence

such that each strategy π̂f ,k is equivalent to r̂f (ϵk ). By Lemma 6.2,

any limit point (πℓ
/
I π̂ℓ , π̂f ) of {(πℓ,k

/
I π̂ℓ,k , π̂f ,k )}k ∈N satisfies

π̂f ∈ BRÎ (πℓ,k
/
I π̂ℓ,k ) for all Î ∈ If . Thus, using the equivalence

between strategies and realization plans, for all k ∈ N : k ≥ ¯k we

have the following:

uℓ(rℓ(ϵk ), rf (ϵk )) < uℓ(r̂ℓ(ϵk ), r̂f (ϵk )).

Notice that this holds nomatter howwe choose r̂f (ϵk ) ∈ BRΓ(ϵk )(r̂ℓ(ϵk )),
which contradicts the fact that (rℓ(ϵk ), rf (ϵk )) is an SE of Γ(ϵk ). □

7 ALGORITHM
One can use our perturbation scheme to compute an (approximate)

QPSE. We do this by developing an LP for computing an SEFCE in a

given ξ -perturbed game instance, where we maximize the leader’s

value. We then conduct a branch-and-bound search on this SEFCE

LP. It branches on which actions to force be recommended to the

follower (by the correlation device of the SEFCE). The idea is that,

as long as we only recommend a single action to the follower at

any given information set, we get an SE of the perturbed game

(specifically an SSE, and an SSE has maximum value among all SEs),

and, thus, according to Theorem 4.2, a QPSE (specifically QPSSE)

if we take the limit point of the perturbations. As in prior papers

on EFCE computation in general-sum games, we focus on games

without chance nodes [5, 35].

For computing an SEFCE we need to specify joint probabilities

over sequence pairs (σℓ ,σf ) ∈ Σ. However, not all pairs need to

specify probabilities, only pairs such that choosing σf is affected by

the probability put on σℓ (we do not need to care about the converse
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of this, as only the follower needs to be induced to follow the

recommended strategy). Intuitively, the set of the leader’s sequences

relevant to a given σf ∈ Σf is made of those sequences that affect

the expected value of σf or any alternative sequence σ̂f ∈ Σf
whose last action is available at If (σf ).

Definition 7.1 (Relevant sequences). A pair (σℓ ,σf ) ∈ Σ is relevant
if either σℓ = σ∅ or there exists h, ˆh ∈ H s.t.

ˆh precedes h, h ∈

If (σf ), and ˆh ∈ Iℓ(σℓ), or if the condition holds with the roles of

σℓ and σf reversed.

For every information set I ∈ Ii , we let rel(I ) be the set of

sequences relevant to each child sequence σi (I )a for a ∈ A(I ). We

let p(σℓ ,σf ) be the probability that we recommend that the leader

plays sequence σℓ , and that the follower sends her residual (i.e., the
probability that is not fixed by the perturbation) to σf . Moreover,

we let η(σf ) be the maximum probability that the follower can put

on a sequence σf ∈ Σf given the ξf -perturbation scheme.

First, we introduce a new value function representing the value to

the leader of the sequence pair (σℓ ,σf ) ∈ Σ given that σf represents

an assignment of residual probability:

uϵℓ (σℓ ,σf ) =
∑

h∈Z:σℓ (h)=σℓ∧σf (h)=σf

η(σf )uℓ(h) +
∑

σ̂f ∈Σf

ξf (ϵ, σ̂f )uℓ(σℓ , σ̂f ).

The following LP finds an SEFCE in a ξ -perturbed SEFG.

max

p,v

∑
(σℓ,σf )∈Σ

p(σℓ ,σf )u
ϵ
ℓ (σℓ ,σf ) s.t. (6a)

p(σ∅,σ∅) = 1, p(σℓ ,σf ) ≥ 0 ∀(σℓ ,σf ) ∈ Σ (6b)∑
σf ∈r el (σℓ )

p(σℓ ,σf ) ≥ ξℓ(ϵ,σℓ) ∀σℓ ∈ Σℓ (6c)

p(σℓ(I ),σf ) =
∑

a∈A(I )

p(σℓ(I )a,σf ) ∀I ∈ Iℓ ,σf ∈ rel(I ) (6d)

p(σℓ ,σf (I )) =
∑

a∈A(I )

p(σℓ ,σf (I )a) ∀I ∈ If ,σℓ ∈ rel(I ) (6e)

v(σf ) = η(σf )
∑

σℓ ∈r el (σf )

p(σℓ ,σf )uf (σℓ ,σf ) + (6f)

+
∑

I ∈If :σf (I )=σf

∑
a∈A(I )

v(σf a) ∀σf ∈ Σf

v(I ,σf ) ≥ η(σf (I )a)
∑

σℓ ∈r el (σf )

p(σℓ ,σf )uf (σℓ ,σf (I )a) (6g)

+
∑

Î ∈If ;σf (Î )=σf (I )a

v(Î ,σf ) ∀I ∈ If ,a ∈ A(I ),σf ∈ prec(I )

v(σf (I )a) = v(I ,σf (I )a) ∀I ∈ If ,a ∈ A(I ). (6h)

In (6g) of this LP, prec(I ), where I ∈ If , is the set of follower’s

sequences σf that precede I in the sense that there is Î ∈ If with

σf (Î ) ⊑ σf (I ) and σf = σf (Î )a for some a ∈ A(Î ). This LP is a

modification of the SEFCE LP given by Čermák et al. [5]. The new LP

has two modifications to allow perturbation. First, it has constraints

(6c) to ensure that the sum of recommendation probabilities on any

leader’s sequence is at least ξℓ(ϵ,σℓ). Second, because we are now
recommending where to send residual probability for the follower,

we must modify the objective in order to give the correct expected

value for the leader.
7

We can branch-and-bound on recommendations to the follower

in a way that ensures that the final outcome is an SSE. That is

guaranteed by the following theorem, which shows that we can add

and remove constraints on which follower actions to recommend

in a way that guarantees an SSE of the perturbed game as long as

the follower is recommended a “pure” strategy with respect to the

residual probabilities.

Theorem 7.2. If a solution to LP (6) is such that for all I ∈ If
there exists a ∈ A(I ) such that p(σℓ ,σf (I )â) = 0 for all â ∈ A(I ),σℓ ∈

rel(σf (I )a) with â , a, then a strategy profile can be extracted in
polynomial time such that it is an SSE of the perturbed game instance.

Now it is obvious that the LP (6) upper bounds the value of any

SSE since the SSE is a feasible solution to the LP.

Theorem 7.2 shows that one way to find an SSE is to find a solu-

tion to LP (6) where the follower is recommended a pure strategy

with respect to the residual probabilities. Since any SSE represents

such a solution, we can branch on which actions we make pure

at each information set, and use branch-and-bound to prune the

space of possible solutions. This approach was proposed by Čermák

et al. [5] for computing SSEs in unperturbed games, where they

showed that it performs better than a single MIP. Because our LP for

perturbed games uses residual probabilities for the follower, we can

apply the branching methodology of Čermák et al. [5]. At each node

in the search we choose some information set I where more than

one action is recommended.We then branch onwhich action inA(I )
to recommend. Forcing a given action is accomplished by requir-

ing all other action probabilities be zero. Our branch-and-bound

chooses information sets according to depth, always branching

on the shallowest one with at least two recommended action. We

explore actions in descending order of mass, where the mass on

a ∈ A(I ) (with sequence σf ) is
∑
σℓ ∈r el (σf ) p(σℓ ,σf ).

The algorithm finds an SSE of the perturbed game. In the limit as

the perturbation approaches zero, this yields a QPSE. No algorithm

is currently known for computing such an exact limit. In practice,

we pick a small perturbation and solve the branch-and-bound using

that value. This immediately leads to an approximate notion of

QPSE (akin to approximate refinement notions in non-Stackelberg

EFGs [12, 15]). Another approach is to use our algorithm as an

anytime algorithm where one runs it repeatedly with smaller and

smaller perturbation values.

8 EXPERIMENTS
We conducted experiments with our algorithm on two common

benchmark EFGs. The first is a search game played on the graph

shown in Figure 2. It is a simultaneous-move game (which can

be modeled as a turn-taking EFG with appropriately chosen infor-

mation sets). The leader controls two patrols that can each move

within their respective shaded areas (labeled P1 and P2), and at each

time step the controller chooses a move for both patrols. The fol-

lower is always at a single node on the graph, initially the leftmost

7
We use the definition of relevant sequences and the LP from von Stengel and Forges

[35] rather than those of Čermák et al. [5]. The latter are not well defined for (6d) and

(6e).
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node labeled S and can move freely to any adjacent node (except at

patrolled nodes, the follower cannot move from a patrolled node

to another patrolled node). The follower can also choose to wait

in place for a time step in order to clean up their traces. If a patrol

visits a node that was previously visited by the follower, and the

follower did not wait to clean up their traces, they can see that the

follower was there. If the follower reaches any of the rightmost

nodes they received the respective payoff at the node (5 and 10,

respectively). If the follower and any patrol are on the same node at

any time step, the follower is captured, which leads to a payoff of 0

for the follower and a payoff of 1 for the leader. Finally, the game

times out after k simultaneous moves, in which case the leader

receives payoff 0 and the follower receives −∞ (because we are

interested in games where the follower attempts to reach an end

node). This is the game considered by Kroer et al. [16] except with

the bottom layer removed, and is similar to games considered by

Bošanskỳ et al. [4] and Bošanskỳ and Čermák [3].

P1 P2

S

5

10

Figure 2: The graph on which the search game is played.

The second game is a variant on Goofspiel [26], a bidding game

where each player has a hand of cards numbered 1 to 3. There are 3

prizes worth 1, . . . , 3. In each turn, the prize is the smallest among

the remaining prizes. Within the turn, the each of two players

simultaneously chooses some private card to play. The player with

the larger card wins the prize. In case of a tie, the prize is discarded,

so this is not a constant-sum game. The cards that were played get

discarded. Once all cards have been played, a player’s score is the

sum of the prizes that she has won.

The LP solver we used is GLPK 4.63 [14]. We had to make the

following changes to GLPK. First, we had to expose some internal

routines so that we could input to the solver rational numbers

rather than double-precision numbers. Second, we fixed a glitch in

GLPK’s rational LP solver in its pivoting step (it was not correct

when the rational numbers were too small). Our code and GLPK

use the GNU GMP library to provide arbitrary-precision arithmetic.

The code, written in the C++14 language, was compiled with the

g++ 7.2.0 compiler. It was run on a single thread on a 2.3 GHz Intel

Xeon processor. The results are shown in Figure 3.

9 CONCLUSIONS AND FUTURE RESEARCH
Quasi-perfect equilibriumhas been studied in extensive-form games,

but was poorly understood in Stackelberg settings. We provided

a game-theoretic, axiomatic definition of quasi-perfect Stackelberg
equilibrium (QPSE). We developed a family of game perturbation

schemes that lead to a QPSE in the limit. Our family general-

izes prior perturbation schemes introduced for finding (even non-

Stackelberg) quasi-perfect equilibria. Using our perturbation schemes,

we developed a branch-and-bound algorithm for QPSE. It leverages

a perturbed variant of the linear program for computing a Stackel-

berg extensive-form correlated equilibrium. Experiments show that
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Figure 3: Experiments. Dashed lines show compute time.
Solid lines show the loss in the leader’s utility compared to
the SSE value in the unperturbed game.

our algorithm can be used to find an approximate QPSE in games

with thousands of nodes.

We showed that some perturbation schemes outside our family

do not lead to QPSEs in some games. It remains an open question

whether our perturbation family fully characterizes the whole set

of QPSEs. As to requirement (i) in Definition 4.1, can all QPSEs be

captured by perturbation schemes that only use polynomial lower

bounds on trembles?

It was recently shown that in non-Stackelberg extensive-form

games, there exists a perturbation size that is small enough (while

still strictly positive) that an exact refined (e.g., quasi-perfect) equi-

librium can be found by solving a mathematical program with that

perturbation size [10, 11, 24], and Farina et al. [11] provide an al-

gorithm for checking whether a given guess of perturbation size

is small enough. That obviates the need to try to explicitly com-

pute a limit of a sequence. It would be interesting to see whether

such theory can also be developed for Stackelberg extensive-form

games—and for our perturbation family in particular.
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