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ABSTRACT
In 2017, Internet ad spending reached 209 billion USD worldwide—

representing 41% of the global advertising market—, while, e.g., TV

ads brought in 178 billion USD. An Internet advertising campaign

includes up to thousands of sub-campaigns on multiple channels,

e.g., search, social, display, whose bid and daily budget need to be

optimized every day, subject to a budget constraint. Such a process

is often unaffordable for humans and its automation can be crucial.

As also shown by marketing funnel models, the sub-campaigns are

usually interdependent, e.g., display ads induce awareness, increas-

ing the number of impressions and conversions of search ads. This

interdependence is widely exploited by humans in the optimization

process, whereas, to the best of our knowledge, no algorithm takes

it into account. In this paper, we provide the first model captur-

ing the sub-campaigns interdependence, designed to guarantee a

satisfactory trade-off between accuracy and amount of data used

for the optimization phase. We also designed an algorithm, called

IDIL, that, employing Granger Causality and Gaussian Processes,

learns the model from past data, and returns an optimal stationary

bid/daily budget allocation. We provided both theoretical guaran-

tees on the loss of the algorithm w.r.t. the clairvoyant solution, and

empirical evidence of the superiority of the proposed algorithm in

both realistic and real-world settings w.r.t. previous approaches.

KEYWORDS
Internet Advertising; Granger Causality; Bid/Budget Optimization

1 INTRODUCTION
Since the early stages of the Internet, one of the most remunerative

ways to economically exploit this novel media channel is online
advertising. In 2017 alone, advertising revenues have totalled about

88 billion USD in the US [13] and about 209 billion USD world-

wide. The choice of the ads to be displayed and their placement

on a webpage are made through auctioning mechanisms [15]. An

advertising campaign consists of a number (up to thousands) of sub-
campaigns and a cumulative (per day or month) budget constraint.

Each sub-campaign is characterized by an ad, a targeting, a bid,
and a daily budget, and these last two parameters, crucial for the

outcomes of the auctions, can be optimized every day using past
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performance. Such an optimization process is often unaffordable

for humans and its complete, or partial, automation can lead to a

significant improvement in revenues.

Nowadays, in addition to the traditional search advertising, other

channels can be used, e.g., display and social. The diversification

of ad channels is a crucial degree of freedom that one can exploit

when setting up an advertising campaign. Indeed, different channels

deeply affect each other’s performance as Internet users regularly

surf from one to another. For instance, Lewis and Nguyen [18]

provide empirical evidence that display advertising increases the

search activity on a product after the display ads visualization.

Kireyev et al. [16] show a similar result between display and search

advertising by using the Granger Causality test. The authors also

show that this interdependence usually induces delayed dynamics,

e.g., an increase in the display advertising impressions can lead to

an increase in the conversions of search ads with a delay of some

days. The sub-campaigns interdependence is customarily exploited

by experts in the field, e.g., setting up sub-campaigns (called assist)
not providing direct conversions but increasing the number of

conversions on the search engine channel. Besides, capturing the

interdependence can provide a direct method for comparing and

optimizing the performance of sub-campaigns on different channels.

Indeed, sub-campaigns on different channels need to be evaluated

using different performance metrics, and how to combine them

is still an open issue. For instance, display and social ads provide

very few conversions compared to search ads but allow search

ads to generate a larger number of conversions, and therefore an

optimization method based only on the number of conversions

might not provide optimal allocations. Although this problem is

central in advertising, to the best of our knowledge, no model in

the economic literature captures such interdependence.

Related work. Zhang et al. [35] propose an offline joint bid/daily

budget optimization algorithm. In addition to neglecting interde-

pendences between sub-campaigns, this work suffers from some

weaknesses, like, among the most relevant, the authors assume a

specific family of functions describing the relationship between

the parameters and do not provide any theoretical bound on the

estimation error. Some of these weaknesses have been addressed

by Nuara et al. [21], who provide an online joint bid/daily budget

optimization algorithm called AdComB-TS. However, this work
overlooks the sub-campaigns interdependence.

Another related research field is the study of user behaviors

from logging data [23, 27], both on social networks [24], and on

search engines [33]. However, these approaches assume to keep

https://doi.org/
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track of all the actions of each user perfectly, and this is usually

unfeasible for most of the advertising tools used by companies. Less

related works concern the optimization of the daily budget [14,

32], bidding strategies in display advertising [17, 29–31, 34], video

advertising [10], and targeting [6].

Original contributions. We extend the work by Nuara et al. [21],

designing an algorithm based on both learning and optimization

techniques that can be adopted for the optimization of real-world

Internet advertising campaigns and that, exploiting sub-campaigns

interdependence, outperforms the algorithms known so far. To do

that, we provide a novel model that, on one side, is expressive

enough to capture the interdependences and, on the other side, is

simple enough to require few data for the estimation of its unknown

parameters. From of the proposed model, we design a data-driven

algorithm, called Interdependency Detection, Identification, and

Learning (IDIL), which consists of two phases: the Interdependence
Graph Learning Phase and the Estimation and Optimization Phase.
In the former phase, the IDIL algorithm learns the sub-campaigns

interdependence structure (represented as a graph), identifying the

pairs of sub-campaigns with the most significant interdependences

by applying the Granger Causality test. In the latter phase, the IDIL
algorithm computes the optimal joint bid/daily budget allocation

exploiting Gaussian Process modeling [25] and an ad hoc dynamic

programming procedure.

Finally, we show that neglecting the sub-campaigns interde-

pendence can lead to massive losses even in simple and common

scenarios and we theoretically bound the loss of our algorithm.

Furthermore, we experimentally evaluate its performance in both

realistic and real-world settings, showing the superiority of its per-

formance compared to the previous approaches that neglect the

sub-campaigns interdependence.

2 INTERNET ADVERTISING CAMPAIGN
Assume to have an Internet advertising campaignC = {C1, . . . ,CN },
with N ∈ N, where Cj is the j-th sub-campaign. At day t , we are
asked to set for each sub-campaign Cj a bid x j ,t ∈ [x j , x j ], and a

daily budget yj ,t ∈ [y j
,y j ], subject to that the daily cumulative

budget of all the sub-campaigns cannot exceed Y ∈ R+. At day
t + 1, we have the performance of the campaign C at the previous

day t , i.e., for every Cj , the tuple (ñj ,t , c̃l j ,t , c̃oj ,t , c̃ j ,t ), where ñj ,t
denotes the number of impressions, c̃l j ,t denotes the number of

received clicks, c̃oj ,t denotes the cumulate value of the conversions,

and c̃ j ,t denotes the amount of money spent for it.
1

As aforementioned, both experts in the field of Internet advertis-

ing and studies in the Internet economic field, e.g., Kireyev et al. [16]

and Hoban and Bucklin [12], demonstrate that impressions, clicks,

and conversions of a sub-campaign might be influenced by the

same kind of quantities of the other sub-campaigns. We extend

the previous studies on the sub-campaigns interdependence, apply-

ing the Granger Causality test [11, 28] to two real-world Internet

advertising campaigns optimized by an Italian web media agency

using the AdComb-TS algorithm [21]. The algorithm, being online,

produces policies explorative enough to make the test significant.

1
We recall that the money spent in one day for a sub-campaign may be different from

the daily budget previously allocated.

At first, we test for Granger causality the data collected for 8

months (from 1/1/2018 to 1/8/2018) from an Internet advertising

campaign for a financial service of an insurance company: data

correspond to N = 12 sub-campaigns, on Google AdWords (search),

Facebook (social), and Google display with a cumulative budget of

Y = 600 Euros. The results obtained from the Granger Causality

test are shown in Figure 1, where the most significant elements of

(ñj ,t , c̃l j ,t , c̃oj ,t , c̃ j ,t ) are represented as nodes of different colors

according to their specific channel (as detailed in the caption of

the figure) and the detected interdependences (with a p-value less

than 5%) are represented as directed edges. In particular, Figure 1a

shows the results when all the sub-campaigns data are aggregated,

while Figure 1b focuses on a specific subset of sub-campaigns who

share the same targeting (retired people). These results confirm

the presence of interdependence between display and search ad-

vertising as previously observed in the literature. They also show

that social and search advertising are interdependent and that the

interdependences may be targeting specific. Moreover, the interde-

pendence between clicks and impressions of the social channels and

the impressions of the search one in this specific scenario seems to

be more relevant than others, since they appear in both graphs. Fur-

thermore, the Granger Causality test detects that interdependence

dynamics between sub-campaigns are delayed up to 2 days.

At second, we test for Granger causality the data collected for 3

months (from 20/7/2018 to 20/10/2018) from an Internet advertis-

ing campaign of a different financial product of the same company

with about Y = 1100 Euros. There are N = 14 sub-campaigns

belonging to social and search advertising channels. The result-

ing graph is depicted in Figure 1c (with a p-value less than 5%).

As in the previous dataset, many sub-campaigns are subject to

interdependence. In particular, in this case, the interdependence

phenomenon is only among impressions, suggesting that these

can be the most significant in practice. Moreover, differently from

the previous case, we distinguish search sub-campaigns into two

subclasses which are at different depths in the marketing funnel:

branding (orange nodes) or no-branding (red nodes). Finally, the

delay of the interdependence dynamics is up to 3.

3 OPTIMIZATION PROBLEM
We provide our optimization problem capturing the sub-campaigns

interdependence. For the sake of presentation, we focus on the inter-

dependence between the impressions of different sub-campaigns.
2

Our goal is the maximization of the revenue earned each day from

an Internet advertising campaign subject to a cumulative budget

constraint. Formally, given a campaign C and a cumulative daily

budget of Y , we aim to find, at day t , the value of bid x j ,t and the

value of daily budget yj ,t for every sub-campaignCj that maximise

the revenue by solving the following optimization problem:

max

x j ,t ,yj ,t

N∑
j=1

vj w j nj (x j ,t ,yj ,t ,uj ,t ) (1a)

2
The use of such quantities is also supported by the experimental results of Section 2,

where the interdependence among impressions is the most significant. However, differ-

ent models, e.g., including the interdependence between the clicks and the conversions,

are straightforward extensions of what is proposed in this section.
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Figure 1: Graphs representing the interdependences of real-world Internet advertising sub-campaigns inferred by Granger
Causality test from real data. The numbers on the edges are the p-values (in terms of %) of the Granger Causality test; display
ads are depicted in blue, social ads in yellow, and search ads in orange (for branding sub-campaigns) and red (for other search
sub-campaigns). The second dataset graph refers to interdependence among impressions ñj ,t of different sub-campaigns Cj .

s.t.

N∑
j=1

yj ,t ≤ Y (1b)

x j ≤ x j ,t ≤ x j ∀j (1c)

y
j
≤ yj ,t ≤ y j ∀j (1d)

where nj (x j ,t ,yj ,t ,uj ,t ) is the expected number of impressions

given bid x j ,t , daily budget yj ,t , and influence index uj ,t , represent-
ing the influence of other sub-campaigns towardsCj and computed

by using the number of impressions of those sub-campaigns that

are interdependent with sub-campaignCj (see below);w j andvj are
the click-trough rate and the value per click for the sub-campaign

Cj , respectively, and, therefore, vj w j nj (x j ,t ,yj ,t ,uj ,t ) is the rev-

enue provided by sub-campaign Cj .
3
We denote with (x∗,y∗,u∗)

the optimal solution to the optimization problem.

To model the sub-campaigns interdependence, we define, given

an advertising campaign C, an interdependence graph G := (C,D) is
a graph in which the adjacency matrix D = {di j },D ∈ {0, 1}

N×N

has elements di j = 1 iff the sub-campaign Ci influences the per-
formance of the sub-campaign Cj . We assume that the graph G

is a Directed Acyclic Graph (DAG), i.e., there are no dependency

cycles among the sub-campaigns. This assumption is supported by

the model of the marketing funnel, in which the majority of the

users flows from the top to the bottom, and different advertising

channels are positioned at different levels of the funnel. Without

loss of generality, we assume that the order over the indices of the

sub-campaigns is one of the topological orders induced by G. Given

the interdependence graph G, a formal definition of the influence

index uj ,t is:

uj ,t :=
1

K

j−1∑
i=1

t−K∑
h=t−1

di j ni (xi ,h,yi ,h,ui ,h ), (2)

where K is a maximum lag order, meaning that users are influ-

enced by ads at most for K consecutive days. Notice that the first

3
The optimization problem in Equations (1a)–(1d) reduces to the one byNuara et al. [21]

when there is no interdependence, i.e., if nj (x j ,t , yj ,t , uj ,t ) = nj (x j ,t , yj ,t ), for
every Cj .

sub-campaign C1, being influenced by no other sub-campaign, has

u1,t = 0 since the first summation in Equation (2) is over an empty

set. The above definition of uj ,t is based on the assumption that the

increase in the number of impressions provided by a user coming

from any sub-campaign influences the number of impressions ofCj
in the same way. While this assumption might seem simplistic, it is

necessary to keep at a pace the complexity of training the model.

Indeed, a more complex model, e.g., where there is a different in-

fluence index for every pair of sub-campaigns, might be an option,

but this would require an excessively large amount of data for the

training of the model, which is not a viable option within the time

horizon of the optimization process.

The optimization problem in Equations (1a)-(1d) can be solved

using dynamic programming techniques, once all its parameters

are known. However, the advertiser does not know the function

nj (·, ·, ·) that returns the number of impressions for sub-campaign

Cj , as well as its click-trough rate w j and its value per click vj .
Therefore, we resort to learning techniques to produce estimates

of these parameters relying on historical data. We assume to have

a dataset Z := {zj ,t } of τ samples that provides, for each day

t ∈ {1, . . . , τ } and each sub-campaign Cj with j ∈ {1, . . . ,N }, the

following values: zj ,t := (x̃ j ,t , ỹj ,t , ñj ,t , ˜cl j ,t , c̃oj ,t , c̃ j ,t ). This is a
tuple with the used bid x̃ j ,t and daily budget ỹj ,t , the received im-

pressions ñj ,t , clicks ˜cl j ,t , values of the conversions c̃oj ,t , and costs
c̃ j ,t . We require that the data collected up to day τ to be exploratory

enough to properly model the sub-campaigns interdependences.

4 THE IDIL ALGORITHM
The pseudo-code of the IDIL algorithm is provided in Algorithm 1.

It requires a dataset Z and two confidence levels αADF ∈ (0, 1) and

αGC ∈ (0, 1) in input. The first phase of the algorithm (Lines 1–8)

is called Interdependence Graph Learning Phase and is devoted to

learning the interdependence graph of the sub-campaigns. The out-

put of this phase is an estimate D̂ of the actual adjacency matrix D.
The second phase of the algorithm (Lines 9–13) is called Estimation
and Optimization Phase and is devoted to the estimation of the

parameters for each sub-campaign Cj (i.e., n̂j (·, ·, ·), v̂j , ŵ j ), using



GAIW’19, May 2019, Montreal, Canada A. Nuara et al.

Gaussian Process [25] modeling, and solving the optimization prob-

lem in Equations (1a)-(1d), once the parameters have been replaced

with their estimates. The outputs of this phase are (x̂∗, ŷ∗, û∗), i.e.,
the optimal bid, daily budget, and influence index for each sub-

campaign.

4.1 Interdependence Graph Learning Phase
The task of learning D̂ is obtained by resorting to the Granger

Causality test [11]. This test has been used in many fields to infer

the structure among datastreams, e.g., sensor networks by Alippi

et al. [1] and by Roveri and Trovò [26], and economics by Calderón

and Liu [2]. While in its original formulation the test assumes that

the analysed time series are stationary, we rely on a generalization

of this test, proposed by Toda and Yamamoto [28], which is suitable

for integrated and cointegrated time series.

The basic idea of this approach is to estimate a Vector AutoRe-

gressive model of order KGR +dmax for the vector (ñ1,t , . . . , ñN ,t ),

where dmax ∈ N is the maximum integration order of the time

series that we analyse and KGR ∈ N is a lag order which is esti-

mated from the data.
4
The use of KGR + dmax lags ensures that the

test statistic used in the Granger Causality test for stationary time

series has the same asymptotic distribution of the stationary case

and, therefore, statistically valid conclusions can be drawn. More

specifically, to test if the impressions of the campaign Ci influence
the impressions of the campaign Cj , we estimate the parameters

ajlm , for eachm ∈ {1, . . . ,KGR + dmax}, of the model:

ñj ,t =
N∑
l=1

KGR+dmax∑
m=1

ajlm ñl ,t−m ∀h ∈ {1, . . . ,N }

and we test for the hypothesis:

H0 : ∀m ∈ {1, . . . ,KGr } ajim = 0,

H1 : ∃m ∈ {1, . . . ,KGr } | ajim , 0.

The complete description of this procedure is provided by Toda

and Yamamoto [28]. The test states that if we reject H0 there is

evidence, with confidence αGC , that the impressions from Ci are
influencing those of Cj .

The IDIL algorithm works as follows. For each sub-campaign,

we estimate dmax performing the Augmented Dickey Fuller test

ADF(ñj,αADF ) on the time series ñj := (ñj ,t , . . . , ñj ,τ ) with confi-

dence αADF (Lines 1–3), and inferring the time series order ad fj ,
and, finally, we perform the Granger Causality test on each pair of

sub-campaigns (Lines 5–7). The result of this procedure is a matrix

P̂ containing the p-values of the pairwise tests, which is used to

generate a valid estimate of the adjacency matrix D̂ ∈ {0, 1}N×N .

This operation is performed by DAG(P̂,αGC ) (Line 8) by selecting

the largest subset S of the p-values p̂i j <
2αGC
N (N−1)

s.t. the matrix

D̂ := {di j = 1 iff pi j ∈ S} to correspond to a DAG.
5
This procedure

ensures an overall confidence αGC on the Granger Causality test,

thanks to the Bonferroni correction for multiple tests, and it avoids

4dmax can be estimated using the Augmented Dickey Fuller test [3], which requires

a confidence level αADF ∈ (0, 1), while KGR can be estimated from the dataset Z by

standard techniques, see Ozcicek and Douglas Mcmillin [22] for details.

5
An adjacency matrix D̂ identifies a DAG if and only if a depth-first search of the

corresponding graph yields no back edges.

Algorithm 1 IDIL

Input: dataset Z , confidence αADF , confidence αGC
Output: optimal bid/budget/new user allocation (x̂ ∗, ŷ∗, û∗)
◃ Interdependence Graph Learning Phase

1: for j ∈ {1, . . . , N } do
2: adfj ← ADF(ñj , αADF )

3: dmax ← maxj {adfj }
4: P̂ ← 0

5: for j ∈ {1, . . . , N } do
6: for i ∈ {j + 1, . . . , N } do
7: p̂i , j ← GCT (n, i , j)

8: D̂ ← DAG(P̂ , αGC )
◃ Estimation and Optimization Phase

9: for j ∈ {1, . . . , N } do
10: n̂j (·, ·, ·) ← GP(Z , D̂ , j)

11: v̂j ← 1

τ
∑τ
h=1

˜co j ,t
˜cl j ,t

12: ŵ j ←
1

τ
∑τ
h=1

˜cl j ,t
ñj ,t

13: (x̂ ∗, ŷ∗, û∗) ← OPT(n̂, v̂ , ŵ , D̂)

14: return (x̂ ∗, ŷ∗, û∗)

that the presence of false positives in the detection of interdepen-

dences. Indeed, the edges generated by false positive detections

might provide adjacency matrices D̂ whose corresponding graph

presents cycles, which would compromise the execution of the

following optimization procedure.

4.2 Estimation and Optimization Phase
The second phase of the IDIL algorithm exploits predictive models

to estimate unknown functions and quantities in the optimization

problem defined in Equations (1a)-(1d), and solves it in a dynamic

programming fashion with an ad hoc procedure.6

We use Gaussian Processes (GPs) to compute, for each sub-

campaign Cj , the function n̂j (x,y,u) estimating the expected num-

ber of impressions nj (x,y,u), given the chosen bid x , the allocated
budgety, and the influence indexu generated by the sub-campaigns

influencing the sub-campaign Cj (Line 10). The estimate ŵ j of the

click-through ratew j and the estimate v̂j of the value per click vj
are the average ratios between the number of clicks and the number

of impressions and between the number of conversions and the

number of clicks, respectively (Lines 9-12). Finally, the estimated

influence index is computed as follows:

ûj ,t :=
1

KGR

j−1∑
i=1

t−KGR∑
h=t−1

ˆdi j n̂i (xi ,h,yi ,h, ûi ,h ), (3)

where we use KGR , obtained from the Granger Causality test, as

an estimate of the actual lag K .
The optimization procedure is an extension of the optimization

algorithm by Nuara et al. [21], to handle also campaigns in which

the revenue given by a budget allocated to a sub-campaign depends

on the budget allocated to other sub-campaigns. The OPT algo-

rithm, presented in Algorithm 2, takes in input the estimates of the

6
For the sake of presentation inwhat followswe assume that the number of impressions

is monotonically increasing in the influence index. A version of the optimization

procedure able to handle general cases is discussed in the final part of this section.
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Algorithm 2 OPT(n̂, v̂, ŵ, D̂)

Input: estimated adjacency matrix D̂ , estimated models n̂j (·, ·, ·), ŵ j ,

v̂j , discretization of the total budget {b1, . . . , bB }
Output: optimal bid/budget allocation (x̂ ∗, ŷ∗, û∗)

1: for i ∈ {1, . . . , B } do
2: Π1,i ,1 ← (bi 0N−1)

3: L1,i ,1 ← v̂1 ŵ1 n̂1(χ1, bi , 0)

4: M1,i ,1 ← n̂1(χ1, bi , 0) ˆd1

5: for j ∈ {2, . . . , N } do
6: for i ∈ {1, . . . , B } do
7: c ← 1

8: for k ∈ {1, . . . , i } do
9: m = | {Πj−1,k ,h }h |

10: for h ∈ {1, . . . ,m } do
11: l ← n̂j (χj , bi − bk ,Mj−1,k ,h (j))
12: Π̄c ← (0j−1 (bi − bk ) 0N−j ) + Πj−1,k ,h
13: L̄c ← v̂j ŵ j l + Lj−1,k ,h

14: M̄c ← l d̂j +Mj−1,k ,h
15: c ← c + 1

16: c ← 1

17: for h ∈ {1, . . . , | {Ltc }c | } do
18: if @k | L̄h < L̄k ∧ ∀p ∈ {j + 1, . . . , N } |M̄h (p) < M̄k (p)

then
19: Πj ,i ,c ← Π̄h
20: Lj ,i ,c ← L̄h
21: Mj ,i ,c ← M̄h
22: c ← c + 1

23: for j ∈ {1, . . . , N } do
24: ŷ∗j ← maxi ΠN ,i ,1(j)
25: û∗j computed as in Equation (3)

26: x̂ ∗j = x
∗
j (ŷ
∗
j , û
∗
j )

27: return (x̂ ∗, ŷ∗, û∗)

adjacency matrix D̂, the number of impressions function n̂j (·, ·, ·),
the click-trough rate ŵ j , the value per click v̂j , and a set of available
daily budget values {b1, . . . ,bB }, which are, for simplicity, evenly

spaced in the range [0,Y ].
The OPT algorithm uses three structures Π, L, andM defined as

follows: Πj ,i ,h is a vector that specifies a partial budget allocation

with cumulative budget of bi among the sub-campaignsC1, . . . ,Cj ;

Lj ,i ,h is the revenue provided by the partial budget allocationΠj ,i ,h ;

Mj ,i ,h is a vector that specifies the value of the influence index of

the sub-campaigns Cj+1, . . . ,CN provided by the sub-campaigns

C1, . . . ,Cj when the partial allocationΠj ,i ,h is used. The third index

h in the structuresmentioned above is necessary since the algorithm

may need to store multiple partial budget allocations for each j and
i . More precisely, the set {Πj ,i ,h }h contains Pareto-efficient partial

budget allocations, where the optimality criteria are the revenue

and the influence indices of campaigns Cj+1, . . . ,CN . For instance,

given two partial budget allocations Πj ,i ,h1
and Πj ,i ,h2

, where the

former has high revenue and a small number of impressions and

the latter vice versa, it is not possible to decide which one is the

optimal before evaluating their influence on the sub-campaigns

Cj+1, . . . ,CN and therefore we need to store both.

At first, the algorithm initializes the values of the structures for

j = 1 (Lines 1–4), corresponding to the allocations of the partial

budget to the sub-campaign C1. For each budget bi , we allocate

it to C1, formally, Π1,i ,1 = (bi , 0N−1), where 0N−1 denotes a null

vector of size N − 1. The sub-campaign C1, being the first in the

topological ordering induced by D̂, is not subject to any interde-

pendence from other sub-campaigns. Therefore, the computation

of the revenue {L1,i ,1}i and the influence index vector {M1,i ,1}i
is performed using the previously estimated models.

7
The vector

M1,i ,1 is computed asM1,i ,1 = n1(χ1,bi , 0) ˆd1, where
ˆdi is the i-th

row of the adjacency matrix D̂. This means thatM1,i ,1(j), i.e., the
j-th element ofM1,i ,1, is equal to n1(χ1,bi , 0) if the sub-campaign

C1 influences the campaign Cj and zero otherwise.

For all the j ∈ {2, . . . ,N }, the algorithm computes the elements

of the three structures Π, L, and M using the values previously

computed at the j − 1-th step, in a dynamic programming fashion

(Lines 5–22). For each daily budget bi and for each daily budget

bk ≤ bi , we compute the revenue and the influence index provided

by the allocation of a daily budget of bi − bk to the sub-campaign

Cj and the remaining daily budget of bk to the sub-campaigns

C1, . . . ,Cj−1. We do this by enumerating all the Pareto-efficient par-

tial allocationsΠj−1,k ,1,Πj−1,k ,2, . . . of the first j−1 sub-campaigns,

then allocating daily budget bi − bk to the sub-campaign Cj and,

finally, we evaluate the total revenue M̄c and the influence indices

vector L̄c provided by the partial allocations obtained, denoted with
Π̄c (Lines 9–15).

8
After that, the algorithm discards all the candi-

date partial allocations which are Pareto dominated (Lines 16-22);

see Ehrgott [4] for details on Pareto efficiency and dominance.
9
Fi-

nally, the algorithm returns the optimal allocation (Lines 23–27): the

optimal budgets ŷ∗j are the elements of maxi ΠN ,i ,1(j); the optimal

influence indices û∗j are computed using Equation (3); the optimal

bids ŷ∗j are computed using the impressions models n̂j (·, ·, ·).

The complexity of the OPT algorithm is O
(∑

j B
∑
i

ˆdi j+2

)
≤

O
(
N B2 Bmaxj

∑
i

ˆdi j
)
and strictly depends on the maximum inde-

gree of the interdependence graph corresponding to D̂. The com-

plexity reduces to that one of the algorithm proposed by Nuara

et al. [21] when the sub-campaigns are not interdependent. Notice

that capturing only the pairs of sub-campaigns with the most sig-

nificant interdependence is a crucial issue from a computational

point of view since, taking into account all the possible pairs of

sub-campaigns, the complexity is bounded byNB2 BN+1−1

B−1
, which is

intractable whenN is large as it happens in real-world applications.

5 THEORETICAL PROPERTIES OF IDIL
We analyse the properties of our problem and those of the IDIL
algorithm. Initially, we analyse the suboptimality of any algorithm

ignoring the sub-campaigns interdependencies w.r.t. our algorithm,

i.e., when the learner uses an adjacency matrix D̂ = 0, and the real

one D is non-null. The following theorem shows that ignoring the

sub-campaigns interdependences might be arbitrarily suboptimal.

7
We define χj as the bid that maximise the number of impressions given a budget y
and a influence index u , or, formally, χj := χj (y, u) = arg maxx n̂j (x , y, u).
8
In the pseudo-code, we denoted the number of Pareto optimal allocations at the

j − 1-th row with a budget of bi with | {Πj−1,i ,h }h |.
9
Notice that the inequality in Line 18 is designed for settings in which the number of

impressions is monotonically increasing in the influence index. However, removing

the condition in Line 18, the proposed method also applies to problems without such

a monotonicity assumption. This comes at at the cost of storing a larger number of

partial allocations in {Πj ,i ,h }h .
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Theorem 1 (Nuara et al. [20]). Given the problem of optimizing
an advertising campaign C, employing a model n̂j (x,y) for the num-
ber of impressions that ignores the sub-campaigns interdependence
may result in an arbitrary large loss in terms of revenue, defined as:

Rt =
N∑
j=1

vj w j nj (x j ,t ,yj ,t ,uj ,t ). (4)

When the model is flexible enough to model the actual process

properly, we can bound its error, formally, defined as follows:

Definition 5.1. Given a dataset Z , the total (estimation) error is:

Eτ :=

N∑
j=1

[
vjw jnj (x

∗
j ,y
∗
j ,u
∗
j ) − v̂jŵ j n̂j (x̂

∗
j , ŷ
∗
j , û
∗
j )

]
,

where the tuples (x̂∗j , ŷ
∗
j , û
∗
j ) are elements of the (stationary) output

(x̂∗, ŷ∗, û∗) of the IDIL algorithm using the estimates of the param-

eters, and (x∗j ,y
∗
j ,u
∗
j ) are elements of the (stationary) output of the

IDIL algorithm using the real parameters.

We can show the following:

Theorem 2 (Nuara et al. [20]). When the expected number of
impressions nj (·, ·, ·) of every sub-campaign Cj is distributed as a
Gaussian Process, the total error between the real revenue and the
estimated one using the output of the IDIL algorithm is upper bounded,
with a probability of at least 1 − δ , as follows:

Eτ ≤ 2Nv(max)

√
1

2τ
log

6N

δ

(
n̂(max) + σ̂

(max)
τ

√
2log

3N

δ

)
+ Nv(max) σ̂

(max)
τ

√
2 log

3N

2δ
,

where n̂(max)
:= maxj max(x ,y,u) n̂j (x,y,u) is the maximum num-

ber of estimated expected impressions over all the sub-campaigns,
σ̂
(max)
τ := maxj max(x ,y,u) σ̂j ,τ (x,y,u) is the maximum estimated
standard deviation, and v(max) is the maximum value per click.

We remark that Rasmussen and Williams [25] show that, in a

generic GP, σ̂
(max)
τ → 0 as τ → ∞. Therefore, the total error Eτ

decreases as the number of samples τ in the training set Z increases.

Our analysis has, so far, focused on the static properties of our

problem. However, the scenario we are studying is a dynamical

system due to the potentially delayed effects induced by the sub-

campaigns interdependence. Therefore, it is crucial to show that,

whenever a stationary allocation is used, the dynamics always reach

a steady state in finite time and how their length is upper bounded.

In this context, a steady state allocation provides a constant number

of impressions for each sub-campaign for at least K consecutive

days. We can show the following:

Theorem 3 (Nuara et al. [20]). Using the stationary allocation
(x̂∗, ŷ∗, û∗) we reach a steady state after at most K Γ + 1 days, where
K is the maximum lag of the influence index uj ,t and Γ is the length
of the longest path of the graph G.

The above theorem states that the more complex the process

(e.g., presenting a cascade of interdependences), the more we have

to wait to completely remove the effects of a suboptimal allocation.

400 600 800 1,000

280

290

300

310

u

n̂
6
(1
,2

0
0
0
,u
)

Figure 2: GPs estimation of the number of impressions
n̂6(1, 2000,u) depending on the influence index u.

6 EXPERIMENTAL EVALUATION
We experimentally evaluate the IDIL algorithm in a real-world

setting and in a synthetic setting, generated by using a realistic sim-

ulator. We compare the revenue Rt produced by IDIL and AdComB-
Mean (an off-line version of the algorithm proposed by Nuara

et al. [21] neglecting any sub-campaign interdependence).

6.1 Real-world Setting
In this experiment, we rely on the data of the second campaign de-

scribed in Section 2 to train our model. We recall that the length of

the dataset is τ = 93 days (from 20/7/2018 to 20/10/2018), the adver-

tising campaign is composed of N = 14 sub-campaigns belonging

to both social and search advertising channels. The corresponding

estimated interdependence graph is provided in Figure 1c. From

21/10/2018 to 4/11/2018 (15 days), the campaign optimization has

been performed by the IDIL algorithm.

When comparing the policies produced by IDIL with those pro-

duced by AdComB-Mean (the off-line version of AdComB-TS),
the former policies appear more suitable then the latter ones, as

a more significant portion of the budget is allocated to social sub-

campaigns and branding search sub-campaigns. The interdepen-

dence suggested by the Granger Causality Test are confirmed by

estimations provided by the GPs. Indeed, in Figure 2, we show the

expected value of the prediction provided by GPs of the number

of impressions for the sub-campaign C6 with a bid value of x = 1

(i.e., one of the most frequent choice during the training set) and

y = 2000 (i.e., a budget large enough to capture all the available

user for this sub-campaign). The number of impressions increases

as the value of the influence index increases, suggesting that a pos-

itive correlation between C2 and C3 impressions, and C6 ones exist.

However, since in a real setting we cannot exclude the presence

of negative interdependence, to compute the optimal allocation

with the IDIL algorithm, we remove the condition in Line 18 of

Algorithm 2, to be able to provide the optimal allocation even if

generic interdependence among sub-campaigns are present. In Fig-

ure 3, we show the expected revenue given by optimal policies

computed by AdComB-Mean and IDIL for different values of the to-
tal budget Y . In this scenario, the exploitation of the sub-campaigns

interdependence can lead to a potential revenue increase up to 13%.

In the 15 days of campaign optimization performed by the IDIL al-
gorithm, the number of daily conversions increased by 11% w.r.t. the

average of the previous 30 days (the result is compatible with our

prediction, given that AdComB-TS/Mean provide very close per-

formance). Although this is a promising result, there is no statis-

tical significance that the IDIL algorithm outperforms in practice

AdComB-TS/Mean. Due to the impossibility to directly compare
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Figure 3: Comparison of the expected revenue Rt given by
the AdComB-Mean and IDIL algorithms.

the performance of the two algorithms online (e.g., by using an A/B

testing system), we resort to a realistic synthetic environment.

6.2 Synthetic Settings
We evaluate the performance of the IDIL algorithm in two syn-

thetic settings, generated by a realistic simulator, comparing the

revenue Rt produced by the following algorithms: IDIL, DA-IDIL
(Dependency Aware-IDIL), a variation of the IDIL algorithm a priori
knowing the dependency matrix D, and AdComB-Mean.

Synthetic Data Generation. The synthetic settings are generated
as follows. At day t , each sub-campaign Cj is characterized by the

set of the users Sj ,t = sj ,t ∪
(⋃

i,j si j ,t
)
that could potentially visu-

alize the ad of the sub-campaignCj . More precisely, we distinguish

the set of the users sj ,t , that would visualize the ad of Cj without

having previously visualized the ads of the other interdependent

sub-campaigns, from the set of the users si j ,t , that would visual-

ize the ad of Cj only after having visualized the ad of Ci . Notice
that si j ,t is non-empty only if the sub-campaigns Ci and Cj are

interdependent and, more precisely, if di j , 0.

The number of users |sj ,t | is sampled from N(µ j ,σ
2

j ), i.e., a

Gaussian distribution with mean µ j and variance σ 2

j . Each user

in sj ,t is characterized by a click probability p
(cl )
j and a conver-

sion probability p
(co)
j specific for the sub-campaign Cj . Conversely,

the number of users |si j ,t | is modeled trough a linear combina-

tion of the number of daily impressions ni ,t−1, . . . ,ni ,t−K (whose

generation is described in what follows), where K represents the

maximum delay in the interdependence dynamics. Formally, we

have that si j ,t := p
(r es)
i j

K∑
k=1

βk ni ,t−k , where βk ∈ [0, 1] are ran-

domly sampled coefficients and p
(r es)
i j is the probability that a user

having visualized ad of Ci is a potential user that may visualize Cj .

Each user in si j ,t is characterized by a click probability p
(cl )
i j and a

conversion probability p
(co)
i j .

At each day t , setting the bid/budget pairs on each sub-campaign

allows the advertiser to take part to Aj ≤ |Sj ,t | auctions based on

the Vickrey-Clarke-Groves mechanism [5, 7–9, 19], in which γj
available ad slots are allocated to a subset of δj advertisers (γj ≤ δj ).
More specifically, each advertiser submits her bid bh and those

with the first γj highest values bh ρh are allocated in the γj slots,
where ρh is the probability that h-th ad is clicked given it has been

observed. The bids bh of the other ads participating in the auctions

are drawn from a truncated Normal distribution N(µ(b),σ (b)), and

ñ1,t ñ2,t

ñ3,t ñ4,t

(a) Setting 1

ñ1,t ñ2,t ñ3,t

ñ4,t

ñ5,t

(b) Setting 2

Figure 4: Interdependence graph G for the two synthetic ex-
perimental settings.
the click probabilities ρh are uniformly sampled in [0, 1]. In the

case the advertiser wins them-th auction, the ad gets an impres-

sion (nm, j ,t = 1, otherwise nm, j ,t = 0). The ad is allocated in a

the l-th slot, the ad can be visualized by an user Sj ,t according to

the probability of being observed p(obs)(l). After the impression,

the user can click on the ad and generate a conversion according

to the click p
(cl )
j and conversion p

(co)
j probabilities if the user be-

longs to sj ,t , and according to the click p
(cl )
i j and conversion p

(co)
i j

probabilities if the user belongs to si j ,t . A click on the ad of Cj
provided by the user corresponding to them-th auction is denoted

by clm, j ,t = 1 (clm, j ,t = 0 otherwise), and imposes a payment of

CPCm, j ,t , as specified by the VCG auction (see [19] for details). The

auctions are generated until the daily budget yj ,t allocated on the

sub-campaign Cj is totally spent, i.e., the total number of auctions

Aj is s.t.
∑Aj
m=1

CPCm, j ,t = yj ,t or until Aj = |Sj ,t |. Finally, in the

case a click happen, the m-th user may convert (com, j ,t = 1) or

not (com, j ,t = 0). The daily impressions, the daily clicks, the daily

conversions (assuming unitary value per conversion), and the daily

costs are computed as nj ,t =
∑Aj
m=1

nm, j ,t , clj ,t =
∑Aj
m=1

clm, j ,t ,

coj ,t =
∑Aj
m=1

com, j ,t , respectively. We refer to [20] for the values

of the main parameters used in the two synthetic settings in which

we test our algorithm.

Synthetic Setting 1. There areN = 4 sub-campaigns, with delayed

dynamics of K = 5 days, whose interdependence graph is shown

in Figure 4a. The longest path of the interdependence graph G is

Γ = 1. C1 and C2 are on the display advertising channel and are

targeted to a wide range of daily users, thus generating a large

number of daily auctions, but their conversion probability is low.

C3 andC4 are on the search advertising channel, generating a small

number of daily auctions, but their conversion probability is high.

We use Y = 500 and B = 10 daily budget values evenly spaced in

the range [0, 500]. The GPs used to estimate the impressions model

of the sub-campaigns adopt a squared exponential kernel in which

the kernel parameters are chosen as recommended by Rasmussen

and Williams [25]. We evaluate the performance of the algorithms

with different numbers of samples τ ∈ {60, 80, 100} in the training

set Z . In the first τ days, a uniformly random allocation is used

to collect data and, after that, the algorithms compute the optimal

solution based on their estimates and then set it.

Results. In Figure 5a, we report the average (over 100 repetitions)

revenue Rt produced by the algorithms with a training of τ = 100

samples. From t = 100 on, the optimal stationary solution is used.
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Figure 5: Results for the Settings 1 and 2. (a) Revenue Rt over time for the Setting 1. (b) Revenue Rt in steady state conditions
for different training sizes τ in Setting 1. (c) Revenue Rt in steady state conditions for different training sizes τ in Setting 2. In
(b) and (c), the revenue of the random allocation is reported with a dotted magenta line and the vertical lines represent the 95%

confidence intervals for the algorithms revenue.

The average revenue of each algorithm peaks at t = 101 and, for

t > 101, decreases by converging to a steady state withinK Γ+1 = 6

days. The peak is generated by the presence of a large number of

residual users who have observed display ads during training and

who, after t = 100, observe search ads. These residual users decrease

for t > 101 until they reach a steady state. Thus, (temporary) peaks

may be achieved with non-stationary policies.

The DA-IDIL algorithm exhibits the best performance, exploit-

ing the a priori knowledge of the adjacency graph D. The gap

between the revenue produced by the IDIL andDA-IDIL algorithms,

due to the estimation error introduced on D̂, is sufficiently small,

showing that the Granger Causality test used by the IDIL algo-

rithm works well in practice. Instead, the revenue produced by the

AdComB-Mean algorithm, neglecting the interdependence among

sub-campaigns, is much smaller than that produced by the other

two algorithms. This is due to the very different budget allocations

chosen by the three algorithms: the IDIL and DA-IDIL algorithms

optimally balance the budget on all the sub-campaigns, while the

AdComB-Mean algorithm greedily invests the budget only in the

search sub-campaigns C3 and C4. Interestingly, the performance

of the AdComB-Mean algorithm is quite similar to that of the uni-

formly random allocation used during training.

In Figure 5b, we report the average revenue Rt at the steady-
state (averaged over the 100 independent repetitions and over

t ∈ {106, . . . , 120}) and the 95% confidence intervals as the number

of samples τ used for training increases. All algorithms always

perform better than the uniformly random allocation. The perfor-

mance of both the IDIL and DA-IDIL algorithms is significantly

better than the one provided by AdComB-Mean (confidence inter-

vals do not overlap). The use of more training samples provides

an improvement in terms of steady-state revenue for the IDIL and

DA-IDIL algorithms. On the other hand, the performance of the

AdComB-Mean algorithm does not benefit from having more sam-

ples, which is probably due to the presence of a model bias induced

by the fact that it neglects the sub-campaign interdependence.

Synthetic Setting 2. There are N = 5 sub-campaigns, whose

interdependence graph is shown in Figure 4b. The longest path of

the interdependence graph G is Γ = 2. C1, C2, and C3 are display

sub-campaigns directed to a wide audience and have a low cost per

impression, but a low conversion rate. C4 is a social sub-campaign,

whose number of impressions is influenced by the influence index

of the display sub-campaigns. Finally, C5 is a search sub-campaign,

whose impressions depend on the influence index ofC1 andC4. The

interdependence among the sub-campaigns occurs within K = 3

days and is modeled as in Setting 1. We set a cumulative budget of

Y = 500 and the budget discretization from the interval [0, 500] with

B = 100. The number of samples for training is τ ∈ {100, 150, 200}.

Results. In Figure 5c, we report the average (over 100 repetitions

and over t ∈ {107, . . . , 120}) revenue of the algorithms. The perfor-

mance of AdComB-Mean is worse than the one of the uniformly

random allocation and gets worse as τ increases. This is an empir-

ical confirmation of the statement of Theorem 1, showing that a

solution that is optimal without interdependence might perform

arbitrarily bad. Conversely, the performance of IDIL and DA-IDIL
are significantly larger than that of the uniformly random allocation

and increase as the number of samples increases.

Final Remarks. Results obtained in synthetic settings show that

this model, relying on a training time which is reasonable for the

application, provides a significant improvement in terms of revenue

of an Internet advertising campaign. Experts in the marketing field

confirmed the feasibility of what proposed in terms of learning

time. Conversely, adopting more complex models would most likely

result unaffordable in most of the cases, since accurate estimations

would require a larger training set and, therefore, excessively long

learning periods in real-world scenarios.

7 CONCLUSIONS AND FUTUREWORKS
In this paper, we formalize, for the first time, the problem of op-

timizing an Internet advertising campaign with sub-campaigns

interdependence. We design the IDIL algorithm that, given a set of

past observations, models these interdependences and returns an

optimal allocation of the bid/daily budget on the sub-campaigns

maximizing the revenue. We analyse the properties of the IDIL
algorithm both theoretically, providing a bound on the total error,

and empirically, showing that it provides revenues on synthetic

datasets significantly better than the state of the art in the field.

In the future, we will extend our algorithm to an online frame-

work and test it in a real-world application.
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