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ABSTRACT
We study Stackelberg games where the underlying structure is a

congestion game. We recall that, while leadership in two-player

games has been widely investigated, only few results are known

when the number of players is three or more. The intractability of

finding a Stackelberg equilibrium (SE) in normal-form and polyma-

trix games is among them. In this paper, we focus on congestion

games in which each player can choose a single resource (a.k.a.

singleton congestion games) and a player acts as leader. We show

that, without further assumptions, finding an SE when the followers

break ties in favor of the leader is not in Poly-APX, unless P = NP.
Instead, under the assumption that every player has access to the

same resources and that the cost functions are monotonic, we show

that an SE can be computed efficiently when the followers break

ties either in favor or against the leader.

KEYWORDS
Stackelberg equilibrium computation; Congestion games

1 INTRODUCTION
The problem of finding a Stackelberg equilibrium (SE) when mixed-

strategy commitments are allowed is receiving a lot of attention in

the artificial intelligence literature, also thanks to the many success-

ful real-world applications in, e.g., security [4, 5, 21]. In Stackelberg

games, a player acts as leader, committing to a (potentially) mixed

strategy, while the other players act as followers [22]. Different
versions of SEs can be defined based on how the followers break

ties: optimistic (OSE) if in favor of the leader, and pessimistic (PSE)
if against her.

Finding an OSE or a PSE in two-player normal-form games

is easy, as shown by, respectively, Conitzer and Sandholm [9]

and Von Stengel and Zamir [22]. The same holds for finding an OSE

in n-player games where the followers play simultaneously in a cor-

related fashion [8]. In more general situations, though, the problem

is hard. Indeed, computing an O/PSE for normal-form games with

two or more followers who play simultaneously a Nash equilibrium
(NE) is not in Poly-APX unless P = NP [2], and exact algorithms are

known only for computing an OSE [3]. In polymatrix games with

the followers restricted to play pure strategies, finding an OSE is not

in Poly-APX unless P = NP if the number of followers is not fixed,

while it is easy if their number is a constant [10]. Finding a PSE is

NP-hard in normal-form games even with two followers playing

pure strategies [6], whereas it is not in Poly-APX unless P = NP

∗
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when there are at least three followers [7]. Finding an OSE is also

NP-hard [9] with multiple followers playing sequentially. Moreover,

in games with a sequential structure (a.k.a. extensive-form games),

computing an OSE is NP-hard even with a single follower [15], and

teh same holds for a PSE [11].

We focus, here, on congestion games (CGs)—game models which,

in spite of their simplicity, enjoy nice computational properties even

with many players—with the aim of investigating whether, in these

games, a Stackelberg paradigm is computationally tractable. In CGs,

given a set of resources, the players’ actions are subsets of the

resources and the costs the players perceive depend (monotonically

or not) on the level of resource utilization (congestion). CGs always
admit pure-strategy NEs which are achievable by best-response

dynamics [17, 18]. CGs where each player cannot use more than a

single resource are called singleton CGs (SCGs). Computing their

NEs is easy [1]. Furthermore, in SCGs in which all the players have

the same action space, finding a social-cost minimizing NE is also

easy [14].

1.1 Original Contributions
We apply a Stackelberg paradigm to SCGs, assuming the presence

of a special player acting as leader. We also allow the leader to

perceive costs which are potentially different from the followers’.

The leader commits to a (potentially) mixed strategy, while all the

other players, acting as followers, observe the leader’s commitment

and then play, simultaneously, reaching an NE.
1
In particular, we

study the case in which the followers play pure strategies after

observing the leader’s commitment, which is reasonable as this

followers’ game always admits at least a pure-strategy NE reach-

able by some best-response dynamics. A simple practical scenario

is when a player has a higher priority to decide which resource

to use before the other players, e.g., when the resources can be

used for free, but gaining a higher priority requires a payment. We

show that, when no further assumptions are made, computing an

OSE is not in Poly-APX unless P = NP, even when the leader has

only one available action and her costs are equal to the followers’.

This shows that the same inapproximability result also holds for

finding an NE minimizing the cost for a given player in an SCG

without leadership. Instead, when every player has access to the

same set of resources and the costs are monotonically increasing

functions of the congestion, the problem of finding an OSE or a

PSE can be solved in polynomial time. Such result holds even when

leader’s and followers’ costs are different. While the derivation is

straightforward when the leader’s commitment is a pure strategy,

the analysis is more involved with mixed-strategy commitments,

1
To our knowledge, the only works related to ours are [12, 19] and their extensions.

However, they analyze a different Stackelberg paradigm where the leader is an author-

ity whose objective is to minimize the social cost of the NE reached by the followers.
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and the result follows from the fact that mixed-strategy commit-

ments do not allow the leader to incur a cost smaller than the

one she gets with pure-strategy ones. Furthermore, we show that

the previous result holds only when the resource cost functions

are monotonic, as, in the non-monotonic case, the leader’s cost

with mixed-strategy commitments can be strictly smaller than that

obtained with a commitment in pure strategies.

2 PRELIMINARIES
In this work, we analyze CGs in which a leader commits to a strat-

egy beforehand, and, then, the followers simultaneously decide

how to play, reaching an NE in the game that results from observ-

ing the leader’s commitment. Following the notation by Shoham

and Leyton-Brown ([2008]), we formally define a Stackelberg SCG
(SSCG) as a tuple (N ,R,A, cℓ , cf ) where: N = F ∪ {ℓ} is a finite

set of players, with player ℓ denoting the leader and F the set

of followers, R is a finite set of resources, A = {Ap }p∈N , where

Ap ⊆ R represents the set of player p’s actions, and cℓ = {ci, ℓ}i ∈R
and cf = {ci,f }i ∈R are, respectively, the leader’s and followers’

cost functions, with ci, ℓ , ci,f : N → Q denoting the costs of

resource i as a function of its congestion. As usual, we assume

ci, ℓ(0) = ci,f (0) = 0 for every i ∈ R. In the following, let |N | = n
and |R | = r be the number of players and resources, respectively.

A strategy σp of player p ∈ N is a probability distribution over

Ap where σp (ap ) denotes the probability that ap ∈ Ap is played.

Let ∆p be the set of player p’s strategies. A strategy σp ∈ ∆p is said

pure if it prescribes to always play action ap ∈ Ap , i.e., σp (ap ) = 1;

otherwise, σp is called mixed. A collection of players’ strategies is

called strategy profile in general, and action profile if all the strategies
are pure. In this work, we use σ = (σℓ ,a) to collectively denote

a strategy profile in which the leader plays a (potentially) mixed

strategy σℓ ∈ ∆ℓ and the followers play pure strategies which

determine an action profile a = (ap )p∈F ∈
>

p∈F Ap .
In the following, given a followers’ action profile a = (ap )p∈F ∈>
p∈F Ap , let ν

a
i = |{p ∈ F | ap = i}| be the number of fol-

lowers selecting resource i ∈ R in a, i.e., the resource congestion
caused by the followers’ presence only. We define the followers’
configuration induced by a as the vector νa ∈ Nr whose i-th com-

ponent is νai . In addition, for σℓ ∈ ∆ℓ we define cσℓ

i,f : N → Q,

the followers’ expected cost of resource i ∈ R given σℓ , as a

function of the number x of followers selecting i , i.e., cσℓ

i,f (x) =

σℓ(i)ci,f (x +1)+ (1−σℓ(i))ci,f (x). Indeed, given a leader’s strategy

σℓ , all followers who select resource i ∈ R experience a conges-

tion that may (with probability σℓ(i)) or may not (with probability

1 − σℓ(i)) be incremented by one, depending on whether the leader

would or would not choose resource i . Finally, given σ = (σℓ ,a),
let cσ

ℓ
=
∑
i ∈Aℓ

σℓ(i)ci, ℓ(ν
a
i + 1) be the leader’s cost.

Notice that, after observing a leader’s strategy σℓ , the followers
play a new CG where resource costs are specified by functions cσℓ

i,f ,

for i ∈ R. Being a CG, such game always admits an NE in which

the players adopt pure strategies [18]. Moreover, we assume that

the followers play pure-strategy NEs, which are reached by playing

some best-response dynamics [17].

Given strategy profile σ = (σℓ ,a), a is an NE for σℓ if, for every
p ∈ F and a′p ∈ Ap , c

σℓ

ap,f
(νaap ) ≤ cσℓ

a′p,f
(νaa′p
+ 1), i.e., if no follower

has an incentive to unilaterally deviate from ap by selecting another

resource a′p . For σℓ ∈ ∆ℓ , let E
σℓ

be the set of NEs in the followers’

game resulting from σℓ .
In the second part of the work, we restrict our attention to a

subclass of SSCGs where each player can select every resource, i.e.,

where Ap = R for all p ∈ N . We refer to these games as Simple
SSCGs (SSSCGs). Formally, an SSSCGs is a tuple (N ,R, cℓ , cf )whose
elements are defined as in an SSCG where all the followers are

identical as they are allowed to choose the same resources. Thus,

only the number of followers selecting each resource is significant.

As a consequence, a followers’ action profile a can be equivalently

represented with the followers’ configuration νa induced by it.

Thus, when studying SSSCGs, we do not explicitly refer to followers’

action profiles but, rather, use ν ∈ Nr with
∑
i ∈R νi = n−1 to denote

a followers’ configuration. Moreover, let us notice that a followers’

configuration ν is an NE for σℓ ∈ ∆ℓ if, for every i ∈ R : νi > 0 and

j ∈ R, cσℓ

i,f (νi ) ≤ cσℓ

j,f (νj + 1).

Observe that, given a leader’s strategy, there might be multiple

NEs in the followers’ game and, hence, different definitions of SE can

be considered depending on the equilibrium-selection rule adopted

by the followers. As customary in the literature, we consider two

definitions: optimistic SE (OSE) and pessimistic SE (PSE). In the first

one, the followers act in favor of the leader, thus selecting an NE

minimizing her cost, while, in the second one, the followers always

select an NE which results in the maximum leader’s cost. Formally:

Definition 2.1. A strategy profile σ = (σℓ ,a) is an OSE if it solves

the following bilevel problem:

min

σℓ ∈∆ℓ

min

a∈Eσℓ
c
(σℓ,a)
ℓ

As it is clear, an OSE always exists in SSCGs.

Definition 2.2. A PSE, if it exists, is a strategy profile σ = (σℓ ,a)
which solves the following bilevel problem:

min

σℓ ∈∆ℓ

max

a∈Eσℓ
c
(σℓ,a)
ℓ

Let us recall that, in general, the problem in Definition 2.2 may

not admit a minimum (but only an infimum) and, thus, a PSE may

not exist [22].

3 SSCG NP-HARDNESS AND
INAPPROXIMABILITY

Let us start our analysis with a negative result, showing that the

problem of computing an OSE in SSCGs is computationally in-

tractable, even if the leader can select a single resource and her

costs are monotonic. Our result is based on a reduction from 3SAT,

a well-known NP-complete problem [13] which reads as follows:

Definition 3.1 (3SAT). Given a finite set C of 3-literal clauses

defined over a finite set V of variables, is there a truth assignment

to the variables which satisfies all clauses?

Theorem 3.2. Computing an OSE in SSCGs is NP-hard.

Proof. We provide a reduction from 3SAT showing that the

existence of a polynomial-time algorithm for computing an OSE in

SSCGs would allow us to solve any 3SAT instance in polynomial

time. Specifically, given a 3SAT instance (C,V ) and a number 0 <
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ϵ < 4, we build an SSCG Γϵ (C,V ) such that there exists an OSE

where the leader’s cost is ϵ if and only if (C,V ) is satisfiable (if not,
the leader’s cost is 4 in any OSE). In the following, l ∈ ϕ denotes

a literal (i.e., a variable or its negation) appearing in ϕ ∈ C , while
v(l) denotes the variable corresponding to that literal. Moreover,

we let |C | =m and |V | = s be, respectively, the number of clauses

and variables.

Mapping. Γϵ (C,V ) is defined as follows:

• N = F ∪ {ℓ}, with F = {pϕ ,pϕ,t | ϕ ∈ C} ∪ {pv,t ,pv ,pv̄ |
v ∈ V } ∪ {pϕ,v ,pϕ,v̄ | ϕ ∈ C,v ∈ V };
• R = {rt }∪{rϕ | ϕ ∈ C}∪{rv,t , rv , rv̄ | v ∈ V }∪{rϕ,v , rϕ,v̄ |
ϕ ∈ C,v ∈ V };
• Apϕ = {rϕ } ∪ {rϕ,l | l ∈ ϕ},Apϕ,t = {rϕ , rt } ∀ ϕ ∈ C;

• Apv = {rv,t , rv },Apv̄ = {rv,t , rv̄ },Apv,t = {rv,t , rt } ∀ v ∈
V ;

• Apϕ,v = {rv , rϕ,v },Apϕ,v̄ = {rv̄ , rϕ,v̄ } ∀ ϕ ∈ C,v ∈ V ;

• Aℓ = {rt }.

Moreover, cost functions are specified by the following table, where

crv̄ ,f = crv ,f , crϕ,v̄ ,f = crϕ,v ,f , and crt ,f = crt , ℓ :

x crϕ,f crv ,f crv,t ,f crϕ,v ,f crt ,f

1 2 7 7 1 ϵ

[2,m] 5 7 3 6 4

m + 1 5 0 3 6 4

Figure 1 shows an example of game Γϵ (C,V ). Clearly, given (C,V ),
Γϵ (C,V ) can be constructed in polynomial time, as it features n =
2m + 3s + 2ms + 1 players and r = m + 3s + 2ms + 1 resources.

Observe that, in Γϵ (C,V ), the leader has a single resource available.
Hence, the only leader’s commitment is to select resource rt , setting
σℓ(rt ) = 1. As a result, the leader’s cost is ϵ if and only if no follower
selects resource rt ; otherwise, it is 4.

If. Suppose that (C,V ) is satisfiable, and let τ : V → {T, F} be a
truth assignment satisfying all clauses in C . Using τ , we recover a
followers’ action profilea = (ap )p∈F ∈

>
p∈F Ap such thata ∈ E

σℓ
,

with σ = (σℓ ,a) providing the leader with a cost of ϵ . Since ϵ is

the minimum cost the leader can achieve and the followers behave

optimistically, σ is an OSE. In particular, let apϕ,t = rϕ , for all

ϕ ∈ C , and apv,t = rv,t , for all v ∈ V . Moreover, if τ (v) = T, let
apv = apϕ,v = rv , apv̄ = rv,t , and apϕ,v̄ = rϕ,v̄ for all ϕ ∈ C , while,

if τ (v) = F, let apv̄ = apϕ,v̄ = rv̄ , apv = rv,t , and apϕ,v = rϕ,v
for all ϕ ∈ C . Notice that, since either τ (v) = T or τ (v) = F, one
between rv and rv̄ is selected bym + 1 followers and the other one

by none, respectively. Say, w.l.o.g., νarv = m + 1 and νarv̄ = 0, as

the other case is analogous. First, no follower pϕ,v would deviate

from rv to rϕ,v , as, otherwise, she would incur a cost of at least 1,

rather than 0. The same holds for followers pϕ,v̄ , as their cost is at
most 6 while, if any of them switched to rv̄ , she would incur a cost

of 7. Similarly, since there are exactly two followers selecting rv,t ,
follower pv would not deviate from rv (as 0 < 3), while pv̄ and pv,t
would not switch from rv,t , as they would get 7 and 4, respectively,

rather than 3. Furthermore, since τ is a truth assignment satisfying

(C,V ), at least one literal l ∈ ϕ evaluates to true under τ for every

ϕ ∈ C . Let apϕ = rϕ,l for every ϕ ∈ C . Since l evaluates to true, it

must be apϕ,l = rl , thus pϕ is the only follower who selects rϕ,l . As
a result,pϕ experiences a cost equal to 1, and she has no incentive to

deviate. Finally, pϕ,t does not deviate from rϕ to rt as 2 < 4. Thus,

we can conclude that a is an NE and, since there is no follower

using rt , the leader’s cost is ϵ .
Only if. Suppose there exists an OSE σ = (σℓ ,a) in which the

leader’s cost is ϵ . We show that a = (ap )p∈F ∈
>

p∈F Ap can be

employed to recover, in polynomial-time, a truth assignment τ that

satisfies all clauses in C . First, let us note that no follower selects
rt in a as, otherwise, the leader’s cost would be 4 > ϵ . As a conse-
quence, all followers pϕ,t and pv,t must select the other resource

they have available, i.e, apϕ,t = rϕ and apv,t = rv,t . Moreover,

there cannot be two followers using resource rϕ , for every ϕ ∈ C ,
as, otherwise, pϕ,t would have an incentive to deviate from rϕ to

rt , as 5 > 4. Thus, apϕ , rϕ , i.e., there must be a literal l ∈ ϕ such

that apϕ = rϕ,l , for all ϕ ∈ C . In addition, there cannot be two

followers selecting rϕ,l as, otherwise, pϕ would have an incentive

to deviate to rϕ , as 5 < 6. Thus, it must be the case that apϕ,l = rl .

This implies that νarl =m + 1 as, otherwise, the cost of pϕ,l would
be 7 > 6, and the follower would change resource, paying rϕ,l .
Furthermore, at least one between pv and pv̄ must select rv,t as,
otherwise, player pv,t ’s cost would be 7 < 4, and she would prefer

switching to resource rt . As a result, at least one between rv and

rv̄ must be selected by a number of followers strictly smaller than

m + 1; in that case, no follower pϕ,v (or pϕ,v̄ ) selects that resource
as, otherwise, she would incur a cost of 7 and she would have an

incentive to deviate. We thus define a truth assignment τ such that:

τ (v) = T if νarv =m + 1, τ (v) = F if νarv̄ =m + 1, and τ (v) is either T
or F whenever νarv = ν

a
rv̄ = 0. Clearly, τ is well-defined. Moreover,

we previously showed that, for every ϕ ∈ C , there exists a literal
l ∈ ϕ such that apϕ,l = rl , which implies that rl = m + 1, and,

thus, τ (v(l)) = T if l is positive, while τ (v(l)) = F if it is negative.

Therefore, τ satisfies all clauses. □

The proof of Theorem 3.2 also shows the following:

Observation 1. In SCGs without leadership, computing an NE
minimizing the cost of a given player is NP-hard.

Furthermore, from Theorem 3.2, it directly follows that the

leader’s cost in an OSE cannot be efficiently approximated to within

any approximation factor which depends polynomially on the size

of the input:

Corollary 3.3. The problem of computing an OSE in SSCGs is
not in Poly-APX unless P = NP.

Proof. Given a 3SAT instance (C,V ), let us build an SSCG Γϵ (C,V )
as in the proof of Theorem 3.2.We have already proven that Γϵ (C,V )
has an OSE in which the leader’s cost is ϵ if and only if (C,V ) is
satisfiable and that, otherwise, the leader’s cost is 4. Let ϵ = 4

2
n+r . As-

sume that there exists a polynomial-time approximation algorithm

A with approximation factor poly(n, r ), i.e., a polynomial func-

tion of n and r . Assume (C,V ) is satisfiable. A applied to Γϵ (C,V )
would return a solution with leader’s cost at most

4

2
n+r poly(n, r ).

Since, for n and r large enough, 4

2
n+r poly(n, r ) < 4, A would al-

low us to decide in polynomial time whether (C,V ) is satisfiable, a
contradiction unless P = NP. □

Notice that, since the followers break ties in favour of the leader

in the reduction, the result in Theorem 3.2 does not apply to the
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r�2,ȳ
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Figure 1: Example of Γϵ (C,V ) with V = {x ,y, z} and C = {ϕ1,ϕ2}, where ϕ1 = x ∨ y ∨ z and ϕ2 = x̄ ∨ y ∨ z̄.

problem of finding a PSE. Our conjecture is that, as it is the case for

all the problems with known results on computing SEs, computing

a PSE is as hard as finding an OSE.

4 SSSCGWITH MONOTONIC COSTS
We focus, in this section, on SSSCGs, showing that, assuming play-

ers’ costs which are monotonic functions of the resource congestion,

an O/PSE can be computed efficiently. Formally, we call the play-

ers’ cost functions weakly monotonic if, for every resource i ∈ R,
ci, ℓ(x) ≤ ci, ℓ(x + 1) and ci,f (x) ≤ ci,f (x + 1) for all x ∈ N, and
strictly monotonic if all the inequalities are strict.

First, notice that, in these games, searching for an O/PSE is not

as easy as it might appear, for the following reason:

Observation 2. There are SSSCGs with weakly monotonic cost
functions where some followers’ configurations are NEs only for leader’s
mixed strategies.

Consider a game with three followers, R = {r1, r2, r3}, and fol-

lowers’ costs as in Figure 2a. The followers’ configuration in which

each follower selects a different resource is not an NE if the leader

commits to a pure strategy, while, for instance, it is an NE for

σℓ(r1) = σℓ(r3) =
1

2
,σℓ(r2) = 0.

In the following, we show that, when searching for an OSE,

one can restrict the attention without loss of generality to pure

strategies of the leader, provided that the players’ cost functions

are weakly monotonic.

Intuitively, given an OSE in which the leader plays a mixed

strategy, we can easily construct another equilibrium in which,

instead, the leader’s strategy is pure.

Theorem 4.1. Every SSSCG with weakly monotonic cost functions
admits an OSE σ = (σℓ ,ν ) in which σℓ is pure.

Proof. Given an OSE σ = (σℓ ,ν ), with σℓ mixed, we construct

another OSE σ̂ = (σ̂ℓ , ν̂ ) such that σ̂ℓ is pure. Let S = {i ∈ R |
σℓ(i) > 0} be the set of resources played by the leader with positive

probability in σℓ , and let i
⋆ ∈ arg mini ∈S ci, ℓ(νi + 1). Clearly, cσ

ℓ
=∑

i ∈Aℓ
σℓ(i)ci, ℓ(νi + 1) ≥ ci⋆, ℓ(νi⋆ + 1). Moreover, given that ν is

an NE for σℓ , the following holds:

cσℓ

i,f (νi ) ≤ cσℓ

j,f (νj + 1) ∀ i ∈ R : νi > 0, j ∈ R. (1)

Let us define σ̂ℓ such that σ̂ℓ(i
⋆) = 1. We now show that such σ̂ℓ

is part of an OSE. Notice that c σ̂ℓ

i,f (x) = ci,f (x) ∀ x ∈ N for every

i , i⋆ ∈ R, while c σ̂ℓ

i⋆,f (x) = ci⋆,f (x + 1) ∀ x ∈ N. Given that the

followers behave optimistically, it is sufficient to provide a ν̂ ∈ Eσ̂ℓ

such that σ̂ = (σ̂ℓ , ν̂ ) satisfies c
σ̂
ℓ
≤ cσ

ℓ
. Specifically, we construct a

sequence of followers’ configurations reaching such ν̂ . Given σ̂ℓ ,
let us consider the sequence (ν (0) = ν ,ν (1), . . . ,ν (T ) = ν̂ ) such that

each configuration differs from the previous one in that a single

follower has changed resource, strictly decreasing her cost in the

followers’ game resulting from σ̂ℓ . Formally, for all 0 ≤ t < T , there
exists i, j ∈ R such that ν (t)i > 0, ν (t + 1)i = ν (t)i − 1, ν (t + 1)j =

ν (t)j + 1, and c σ̂ℓ

i,f (ν (t)i ) > c σ̂ℓ

j,f (ν (t + 1)j ). Moreover, let us assume

that a follower deviates to resource i⋆, i.e., ν (t + 1)i⋆ > ν (t)i⋆ , only
if this is the only way of strictly decreasing some follower’s cost.

Now, we prove:

ν (t + 1)i⋆ ≤ ν (t)i⋆ ∀ 0 ≤ t < T . (2)

By contradiction, suppose there exists 0 ≤ t < T such that ν (t +
1)i⋆ > ν (t)i⋆ . Then, in ν (t), there exists a follower who can strictly

decrease her cost by choosing i⋆ instead of resource j , i⋆ ∈ R :

ν (t)j > 0. Thus,

cσℓ

i⋆,f (νi⋆ + 1) ≤ ci⋆,f (ν (t)i⋆ + 2) < c j,f (ν (t)j ), (3)

where the first inequality holds since ν (t)i⋆ = νi⋆ . Two cases

are possible. In the first one, ν (t)j ≤ νj , implying c j,f (ν (t)j ) ≤

c j,f (νj ) ≤ cσℓ

j,f (νj ), which, together with Equations (1) and (3), leads

to a contradiction. In the second case, ν (t)j > νj implies that there

exists k , i⋆ ∈ R such that ν (t)k < νk (and νk > 0), otherwise∑
i ∈R ν (t)i > n − 1. It follows that c j,f (ν (t)j ) ≤ ck,f (ν (t)k + 1) ≤
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cσℓ

k,f (νk ), where the first inequality holds since, due to our assump-

tions on the sequence, it cannot be c j,f (ν (t)j ) > ck,f (ν (t)k + 1)

as ν (t + 1)i⋆ > ν (t)i⋆ , and the second inequality follows from

ν (t)k < νk . Thus, Equations (1) and (3) give a contradiction. As a

result, Equation (2) holds, and, thus, ν̂i⋆ ≤ νi⋆ . Given the mono-

tonicity of the costs, σ̂ is an OSE. □

Now, we prove that a similar result holds for the pessimistic case.

The result is weaker though, as it requires the stronger assumption

that the followers’ cost functions be strictly monotonic.

Theorem 4.2. Every SSSCG in which leader’s and followers’ cost
functions are weakly monotonic and strictly monotonic, respectively,
admits a PSE σ = (σℓ ,ν ) in which σℓ is pure.

Proof. Suppose there exists a PSE σ = (σℓ ,ν ) in which σℓ is

mixed. We show that there must be another PSE σ̂ = (σ̂ℓ , ν̂ ) such
that σ̂ℓ is pure. Let us define i⋆ ∈ R as in the proof of Theorem 4.1,

so that cσ
ℓ
≥ ci⋆, ℓ(νi⋆ + 1) and Equation (1) holds. Given that the

followers behave pessimistically, we need to show that, for every

ν̂ ∈ Eσ̂ℓ
, σ̂ = (σ̂ℓ , ν̂ ) satisfies c

σ̂
ℓ
≤ cσ

ℓ
. By contradiction, assume

that c σ̂
ℓ
> cσ

ℓ
, which implies ci⋆, ℓ(ν̂i⋆ + 1) > ci⋆, ℓ(νi⋆ + 1). It

easily follows from the monotonicity of the costs that ν̂i⋆ > νi⋆ .
Thus, there must be a resource j ∈ R such that ν̂j < νj , otherwise∑
i ∈R ν̂i > n − 1. Moreover, let us notice that νj > 0. Thus,

cσℓ

i⋆,f (νi⋆ + 1) ≤ ci⋆,f (ν̂i⋆ + 1) ≤ c j,f (ν̂j + 1) ≤ cσℓ

j,f (νj ), (4)

where the first inequality follows from νi⋆ < ν̂i⋆ , the second one

from the fact that ν̂ is an NE for σ̂ℓ , while the third one from

ν̂j < νj . Equation (1) implies cσℓ

j,f (νj ) ≤ cσℓ

i⋆,f (νi⋆ + 1). If cσℓ

j,f (νj ) <

cσℓ

i⋆,f (νi⋆ +1), then Equation (4) leads to a contradiction. Otherwise,

if cσℓ

j,f (νj ) = cσℓ

i⋆,f (νi⋆ + 1), all inequalities in Equation (4) must

hold as equalities. However, this would imply cσℓ

i⋆,f (νi⋆ + 1) =

ci⋆,f (ν̂i⋆ + 1) and c j,f (ν̂j + 1) = cσℓ

j,f (νj ), a contradiction as σℓ is

mixed and the followers’ cost functions are strictly monotonic. □

x cr1,f cr2,f cr3,f
1 1 4 0

2 3 7 2

3 5 7 5

(a) SSCG for Observation 2.

x cr1, ℓ cr1,f cr2, ℓ cr2,f
1 1 1 1 1

2 2 1 2 1

(b) SSCG For Observation 3.

x cr1, ℓ cr1,f cr2, ℓ cr2,f
1 1 2 1 2

2 2 1 2 1

(c) SSCG for Obs. 5 (first).

x cr1, ℓ cr1,f cr2, ℓ cr2,f
1 2 1 2 1

2 0 2 0 2

(d) SSCG for Obs. 5 (second).

Figure 2: Cost functions of some SSSCG examples.

Moreover, let us notice that Theorem 4.2 fails to hold whenever

the followers’ cost functions are weakly monotonic.

Observation 3. There are SSSCGs with weakly monotonic cost
functions where any PSE prescribes the leader to play a mixed strategy.

Consider a game with two followers, R = {r1, r2}, and players’

costs as in Figure 2b. Clearly, any followers’ configuration is an

NE, independently of the leader’s commitment. Thus, whenever

the leader commits to a pure strategy, she incurs a cost of 2, while

she can pay only 1 by uniformly randomizing between the two

resources.

Theorems 4.1 and 4.2 provide the fundamental insights which

allow us to efficiently compute O/PSEs in SSSCGs with monotonic

cost functions. Specifically, we can compute an OSE (resp., PSE)

by enumerating the leader’s pure strategies and, for each of them,

computing the followers’ NE which results in the leader’s cost

being minimized (resp., maximized). An O/PSE is then obtained by

picking a pure strategy which minimizes then leader’s cost. The

detailed procedure is described in Algorithm 1, where function

O-Pick(S) (resp., P-Pick(S)) returns some resource j⋆ ∈ S , giving
precedence to resources j⋆ , i (resp., j⋆ = i).

input :An SSSCG Γ = (N ,R, cℓ , cf )
output :σ that is an O/P-LFE of Γ

Function Compute-O/P-LFE(Γ)
for i ∈ R do

σℓ[i] ← σℓ ∈ ∆ℓ : σℓ(i) = 1;

ν [i, j] ← 0 ∀ i, j ∈ R;

while
∑
j ∈R ν [i, j] < n do

S ← arg minj ∈R c
σℓ [i]
j,f (ν [i, j] + 1);

j⋆ ← O/P-Pick(S);

ν [i, j⋆] ← ν [i, j⋆] + 1;

end
cℓ[i] ← ci, ℓ(ν [i, i] + 1);

end
i⋆ ← arg mini ∈R cℓ[i];

return σ = (σℓ[i
⋆],ν [i⋆, ·]);

Algorithm 1: Algorithm computing an O/PSE of an SSSCG.

Let us remark that, in Algorithm 1, σℓ[·], ν [·, ·], and cℓ[·] are
the algorithm’s variables, and, for every i ∈ R, ν [i, j] denotes the
number of followers selecting resource j ∈ R in the NE that is

reached when the leader’s strategy is σℓ[i].

Theorem 4.3. Algorithm 1 is correct and it runs in timeO(nr log r ).

Proof. In order to show that Algorithm 1 is correct, due to

Theorems 4.1 and 4.2 we only need to prove that, for every i ∈ R and

after the execution of the while loop, the followers’ configuration

ν is such that νj = ν [i, j] for j ∈ R is an NE for σℓ[i] minimizing

(or maximizing) the leader’s cost. First, let us show that ν is an

NE. Suppose, by contradiction, it is not. Then, there exists j ∈ R :

νj > 0 and k ∈ R such that c
σℓ [i]
j,f (νj ) > c

σℓ [i]
k,f (νk + 1). Let ν̄k

be the value of ν [i,k] during the step in which ν [i, j] is set to its

final value νj . Clearly, c
σℓ [i]
j,f (νj ) > c

σℓ [i]
k,f (νk + 1) ≥ c

σℓ [i]
k,f (ν̄k + 1),

and the algorithm would have not incremented ν [i, j] during that
step, a contradiction. In the rest of the proof, we focus on the

optimistic case, as the pessimistic one can be treated analogously.

Suppose, by contradiction, that ν is not an NE minimizing the

leader’s cost for σℓ[i]. Then, there exists another NE ν̂ for σℓ[i] such
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that ci, ℓ(ν̂i + 1) < ci, ℓ(νi + 1). Given the monotonicity of the costs,

ν̂i < νi . Therefore, there must exist j , i ∈ R such that ν̂j > νj . Let
us consider the step in which ν [i, i] is set to νi , and let ν̄j be the value

of ν [i, j] during that step. It must be that c
σℓ [i]
i,f (νi ) < c

σℓ [i]
j,f (ν̄j + 1)

as, otherwise, the algorithm would have incremented ν [i, j] instead

of ν [i, i]. But then c
σℓ [i]
j,f (ν̄j + 1) ≤ c

σℓ [i]
j,f (νj + 1) ≤ c

σℓ [i]
j,f (ν̂j ), which

implies c
σℓ [i]
i,f (ν̂i + 1) ≤ c

σℓ [i]
i,f (νi ) < c

σℓ [i]
j,f (ν̄j + 1) ≤ c

σℓ [i]
j,f (ν̂j ),

contradicting the fact that ν̂ is an NE for σℓ[i].
Clearly, the while loop is executed exactly r times, and each

execution performsn steps. Moreover, using efficient data structures

each step takes time O(log r ). Thus, the overall running time is

O(nr log r ) □

We conclude the section by showing that, in SSSCGs with mono-

tonic costs and under the additional assumption that leader’s and

followers’ costs be equal, all O/PSEs in which the leader plays a pure

strategy are NEs in the game where all players play simultaneously

(i.e., without leadership).

Theorem 4.4. Given an SSSCG with monotonic costs and cℓ =
cf = {ci }i ∈R , any O/PSE σ = (σℓ ,a) with σℓ pure is an NE.

Proof. Let σ = (σℓ ,ν ) be an O/PSE with σℓ(i
⋆) = 1 for some

i⋆ ∈ R. Clearly, given that ν ∈ Eσℓ
, for every i ∈ R : νi > 0 and

j ∈ R, cσℓ
i (νi ) ≤ cσℓ

j (νj +1). Therefore, there is no follower who has

an incentive to change resource, and, thus, it is sufficient to prove

that the leader does not deviate from resource i⋆ either, unilaterally.

If νi⋆ > 0, we have ci⋆ (νi⋆ +1) = cσℓ

i⋆ (νi⋆ ) ≤ cσℓ
j (νj +1) = c j (νj +1)

for every j , i⋆ ∈ R, and it immediately follows that the leader

does not deviate and σ is an NE. The case in which νi⋆ = 0 is

more involved. By contradiction, suppose that σ is not an NE. As a

consequence, the leader must have an incentive to deviate for some

j , i⋆ ∈ R, i.e., ci⋆ (νi⋆+1) = ci⋆ (1) > c j (νj +1). Suppose the leader

commits to a strategy σ̂ℓ such that σ̂ℓ(j) = 1. We prove that, for

every ν̂ ∈ Eσ̂ℓ
, σ̂ = (σ̂ℓ , ν̂ ) provides the leader with a cost strictly

smaller than ci⋆ (1). Suppose, instead, c j (ν̂j + 1) ≥ ci⋆ (1). Three
cases are possible. In the first case, ν̂j < νj and ci⋆ (1) > c j (νj +1) ≥

c j (ν̂j + 1) ≥ ci⋆ (1). In the second one, ν̂j = νj and c j (ν̂j + 1) ≥

ci⋆ (1) > c j (νj + 1). Finally, in the third case, ν̂j > νj , which implies

that there must be a resource k , i⋆ ∈ R such that ν̂k < νk , and
ci⋆ (1) > c j (νj + 1) ≥ ck (νk ) ≥ ck (ν̂k + 1) ≥ c j (ν̂j + 1) ≥ ci⋆ (1). As
all cases lead to a contradiction, it must be c j (ν̂j + 1) < ci⋆ (1). The
proof is complete as, in σ̂ , the leader’s cost is c j (ν̂j + 1) < ci⋆ (1),
contradicting the fact that σ is an O/PSE. □

5 SSSCGS WITH ARBITRARY COSTS
Finally, let us shift our attention to general SSSCGs, i.e., games in

which the costs need not be monotonic functions of the resource

congestion.

Observation 4. Given an SSSCG, an optimal leader’s pure strat-
egy to commit to can be computed efficiently, both in the optimistic
and the pessimistic case.

Clearly, when the followers’ costs are monotonic functions, we

can find an optimal leader’s pure strategy using Algorithm 1. In

general, we can apply a procedure similar to that of Algorithm 1,

enumerating the leader’s pure strategies while computing, for each

of them, an NE minimizing/maximizing the leader’s cost in the

resulting followers’ game. In order to find one such NE, we can

adapt an algorithm proposed in [14], which relies on dynamic pro-

gramming to compute inO(r5n6) an NE minimizing the social-cost

in SSSCGs without leadership. It suffices to change the objective

function from the social cost to the leader’s cost of the resource

selected in the current pure strategy. Thus, in general, the overall

computation requires O(r6n6).

Unfortunately, the assumption that the leader always plays pure

strategies is not safe in SSSCGs with arbitrary costs, as Theo-

rems 4.1 and 4.2 do not hold if the monotonicity assumption is

dropped.

Observation 5. There are SSSCGs such that:
• the followers’ costs only are non-monotonic, and any O/PSE
prescribes the leader to play a mixed strategy;
• the leader’s costs only are non-monotonic, and any O/PSE
prescribes the leader to play a mixed strategy.

Consider a game with a single follower, R = {r1, r2}, and players’

costs as in Figure 2c. Clearly, the follower selects r2 whenever

σℓ(r1) ≤
1

2
, while, if σℓ(r1) ≥

1

2
, she chooses r1, providing the

leader with a cost of 2 − σℓ(r1) and 1 + σℓ(r1), respectively. Thus,

any O/PSE prescribes the leader to play σℓ such that σℓ(r1) =
1

2
.

Moreover, when the players’ costs are as in Figure 2d, the fol-

lower selects r2 if σℓ(r1) ≥
1

2
, and r1 if σℓ(r1) ≤

1

2
, providing the

leader with a cost of 2σℓ(r1) and 2 − 2σℓ(r1), respectively. As a

result, any O/PSE of the game prescribes the leader to play σℓ such
that σℓ(r1) =

1

2
.

6 CONCLUSIONS AND FUTUREWORKS
We analyzed Stackelberg games where the underlying structure is a

congestion game, focusing on the case in which the players’ actions

are singletons. We proved that, without further assumptions on

the players’ action spaces and the resource cost functions, it is not

possible to approximate in polynomial time the leader’s cost in an

OSE up to within a polynomial factor in the size of the game, unless

P = NP. Differently, when each player can select any resource

and the cost functions are monotonic, an O/PSE can be computed

efficiently, as there is always a leader’s optimal pure strategy.

In the future, we will study the computational complexity of

finding anO/PSE in SSSCGswith arbitrary costs in order to establish

whether the problem can be solved efficiently or not, in spite of

the fact that the leader’s optimal commitment may be a mixed

strategy. Moreover, we will extend our results for SSCGs—studying

the complexity of finding a PSE, also considering the special case

where cost functions aremonotonic in the resource congestion—and

we will analyze other classes of CGs with different combinatorial

structures.
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