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ABSTRACT
A common assumption in opinion dynamics is that an individual’s
opinion is an atomic point in the opinion space, or a central point ac-
companied by a certain degree of uncertainty or indifference. While
this is satisfactory in many domains, we propose an extension where
an individual’s preference is an interval in the space of opinions with
two characteristic endpoints. These endpoints represent extreme
expressions of the same opinion and can be influenced by diffe-
rent sources. For instance, an individual’s political opinion, as seen
through the lense of the expressed range of political stances, may
be influenced by their family on one endpoint, and by their peers
on the other endpoint. In this paper, we introduce a general model
for capturing this type of interval opinion dynamics and examine
several empirical features of this model in the presence of polarizing
extremists.
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1 INTRODUCTION
The field of opinion dynamics examines the spread of ideas or con-
cepts throughout a population. In recent years, it has become a topic
of particular interest to the multiagent systems community, and the
wider AI research community. This interest has been driven, in no
small part, by the rapid spread of news and rumors, and the polari-
zation of individual opinions enabled by persistent and ubiquitous
social media interactions. The study of opinion dynamics is instru-
mental in understanding how these interactions help shape public
discourse and discussions.

Early studies of opinion dynamics focused on modeling the spread
of new ideas introduced to a population. In these models of innova-
tion diffusion, individuals chose whether to adopt a novel idea based
on the actions of their neighbors, by way of a repeated coordina-
tion game. In particular, a new idea was adopted when more than a
threshold number of neighbors have already adopted it. This model
was used to examine the uptake of new technologies such as antibio-
tics by physicians [13] and hybrid corn by farmers [23], but can, in
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the modern context, be easily adapted to examine the competition
between smart device operation systems and news media platforms.

In innovation diffusion models, the opinions of individuals are
binary variables — either the novel idea is adopted or not. In opi-
nion dynamics, opinions take on real values within a fixed interval.
This allows the model to capture a gradual shift of opinions, where
repeated interactions between individuals cause their opinions to
drift closer together. The model may incorporate a value for indivi-
duals’ uncertainty [8, 11, 12, 14, 25], or may choose to capture this
uncertainty as an interval in the opinion space [18, 28].

In certain domains, the actual opinion held by an individual may
itself be an interval, modeling not a range of uncertainty but a speci-
fic set of feasible values, embedding in a high dimensional opinion
space. Such scenarios arise naturally. For example, in the realm of
political discourse, an individual may accept a particular combina-
tion of values influenced by their peers, and a second combination
of values passed down through their family; naturally, between these
two extremal points lies an interval of feasible values representing
compromises between those two ideals. As individuals interact, the
interval of feasible values will shift. Since the interval does not me-
rely represent uncertainty or indifference, the two endpoints are not
necessarily interchangeable and may interact with the community in
different ways. Like the eponymous “Polar Twins”, Jekyll and Hyde,
these endpoints are influenced by different associates in the social
network, defined by the different natural of individual relationships.

In this paper, we propose an opinion dynamics model of interval-
opinions, that capture sets of feasible options preferred by the agents.
Our model allows the interval-opinion endpoints to interact asym-
metrically within a social network. The paper’s layout is as follows:
We begin with a related work overview in Section 2, followed by the
definition of our model in Section 3. Sections 4 and 5 present our
empirical studies and results. Section 6 concludes the paper.

2 RELATED WORK
Recent work in opinion dynamics incorporates the notion of uncer-
tainty alongside a real number representation of an agent’s prefe-
rence. Hegselmann and Krause [14] were the first to propose such a
model, termed the bounded confidence model. In this model, agents’
numerical preferences grow closer to their neighbors through re-
peated interactions via weighted averaging. However, agents are
selective in their interactions based on their level of uncertainty:
confident (low uncertainty) agents only interact with agents whose
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opinions are similar to theirs, while uncertain agents are less dis-
criminating. The behavior of this model is well understood (see
[17] and [20], for instance), known to converge in polynomial time
[3], and has been extended into a more general framework termed
Diffusive Influence Systems [7].

Carvalho and Larson [6] adopt a similar approach. They model
a scenario of experts conferring and adjusting their opinions ac-
cording to each other, giving a higher weight to similar opinions.
They show that this dynamic follows naturally if utilities follow a
quadratic scoring function, and is guaranteed to converge to a stable
configuration.

The Hegselmann-Krause model has been refined and used to
study polarization of opinions in communities [9, 24]. While our
experiments explore similar polarization scenarios, our model is
fundamentally different from the classic Hegselmann-Krause mo-
del in that opinions are modelled as intervals in high dimensional
space, and a rich class of interaction dynamics are possible beyond
weighted averaging.

Finally, we must mention the use of interval valued fuzzy sets
to extend the Hegselmann-Krause bounded confidence opinion dy-
namic models in different ways by Wang and Mendel [26], and
Gasparri and Oliva [11]. Our work differ in two significant ways.
The fuzzy set models represent uncertainty of a point-preference in
the opinion space; this is fundamentally different from intervals in
our model, which is the true preference of the individual, represen-
ting a set of feasible points. Moreover, our model allows a richer
class of interactions between individuals, including the allowance
for the endpoints of the intervals to be influenced asymmetrically.

Other researchers in the multiagent community have also explored
the diffusion of non-numerical opinions in networks. Brill et al. [5]
examined the interaction dynamics of rank ordered preferences. Each
agents’ preference is a total ordering of the candidates. In each round,
an agent selects a random pair of candidates, and polls her neighbors
for their respective ranking between the two candidates, swapping
her own ranking of them to match the majority result. They show that
this Pairwise Preference Diffusion is complex, and find termination
and convergence conditions for only certain types of graphs.

3 MODEL
We begin our research by introducing the simplest variation of non-
atomic opinions: intervals. For convenience, we view this situation
as a pair of coupled extremes, termed “Castor” and “Pollux”, and an
interval opinion is any combination of these extremes. As this is the
first study of interval opinions, we adopt the view of the C&L [6]
model, and assume that extremes are points in a simplex Sd−1 ⊂ Rd .
This allows any portion of the interval opinion to be interpreted as
a preference over d issues, e.g. in politics. Again, the fact that the
opinion interval groups mutliple such preference points is not to
be taken as indiference between them or uncertainty regarding the
preference. Rather, interval opinions should be taken as a stand-alone
concept.

Formally, in this paper, we will consider interval opinions of the
form [c,p] (a segment in space), where c,p ∈ Sd−1 ⊂ Rd . A popula-
tion of n opinions {[ci ,pi ]}i ∈[n], where [n] = {1, 2, . . . ,n}, will be
organised into a joint state matrix x = [c1, . . . , cn ,p1, . . . ,pn ] ∈

Md×(2n)(R). We will term ci and pi , respectively, Castor-i and

Pollux-i. For easier verbal expression we will refer to the inter-
val opinion [ci ,pi ] as Castor-i-Pollux, or C-i-P for short. We will
want to study various forms of mutual influence witin a population
of interval opinions and the development of the joint state in time,
i.e. interval opinion dynamics. To begin our study, in this paper, we
will concentrate on linear dynamics. That is, whatever influences
an interval-opinion [c,p] experiences, absorbing them will result
in the same linear transformation applied to all constituent points
of the interval-opinion. Hence, all linear dynamics will have the
form: xt+1 = xtD[xt ], where D[xt ] is a 2n × 2n column-stochastic
dynamics matrix, parameterised by and dependent on the joint state.
Where the joint state is clear from the context, we will simply write
D. Due to the linear nature of opinion transformation by the dyn-
amic, we can break down the dynamics matrix into the following
sub-structure:

D =

(
Dc→c Dc→p

Dp→c Dp→p

)
,

where Dc→c ,Dc→p ,Dp→c ,Dp→p are matrices of size n × n with
non-negative elements, and for all j ∈ [n] holds∑

i ∈[n]

(
Dc→c
i j + D

p→c
i j

)
=

∑
i ∈[n]

(
D
c→p
i j + D

p→p
i j

)
= 1.

Notice how the sub-structure notation underlines the use of linear
dynamics to define the influence of interval-opinions on each other in
terms of coupled influence of their end-points. In particular, Dc→p ,
for example, captures how the Castors of the joint state xt influence
the Pollucis of the joint state xt+1.

In the above notation, the C&L model [6] would stipulate that
Di j ∝

1
ϵ+d (ηi ∥ηj )

, where d(·∥·) : Rd × Rd → R≥0 is some distance

function, ηi =

{
ci i ∈ [n]

pi−n i ∈ [2n], i > n
and similarly for ηj . The

C&L model was particularly interested in the norm d
(
ηi ∥ηj

)
=√∑d

k=1(ηik−ηjk )
2

d . We adopt this distance function as well.
It must be noted that the C&L model describes the behaviour

of single-point atomic opinions that are fully linked (every point
influences every other). As a result, it would treat the joint state
x as a set of 2n opinions, without any regard to the Castor-Pollux
relationship. Setting Di j = d

(
ηi ∥ηj

)
for i, j ∈ [2n] fully reproduces

that effect in our notation.
However, this does not demonstrate the effects of the interval-

opinion concept. To that end, we will need to study more complex
dynamics that: a) take into account the interval as an object; b)
subject the extremes of the interval to conflicting influences. We, the-
refore, formulate the following sequence of dynamics with incresing
involvement of the interval nature of the opinion.

Base-line Dynamics: Independent Castor and Pollux (ICaP).
As a first step, we assume that interval opinion extremes form two
independent sets, each with its interval influence structure. E.g., a
teenager’s opinion of what’s “cool”is an attempt to reconcile extreme
conformity with extreme individuality, with each extremity being
subject to independent discussion, fashion and influence. In our
formalism, this can easily be captured by the following constraints
on the linear dynamics D:

Dp→c = Dc→p = 0n×n
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Dc→c
i j ∝

1 + δi jϵγω
ϵ + d

(
ci ∥c j

) , and Dp→p
i j ∝

1 + δi jϵγω
ϵ + d

(
pi ∥pj

)
where i, j ∈ [n], and δi j is the standard Kronecker delta function, so
that δi j = 1 if an only if i = j, and ϵγω is the self-inertia parameter.
Notice that ϵγω will influence the entire interval, not just the exreme
points.

Independent Network Castor and Pollux (INCaP). Of course
teenagers are also subject to strict grouping and socialisation limita-
tions, and their opinion will not be freely influenced by all. Rather, a
complex network of influences is formed, and (conflicted as teena-
gers are) each opinion extreme can have an independent influence
network.

In our formalism this is expressed by Castores (Pollucis) not fully
influencing each other. Instead, their influence network is captured
by two directed graphs, Gc and Gp , over a node set [n] that govern
mutual influences of opinion extremes. In particular, if an edge
(i → j) ∈ Gc , then the opinion of Castor-i will influence Castor-j.
Similarly, if an adge (i → j) ∈ Gp , then the opinion of Pollux-i will
influence Pollux-j. We will assume that all self edges are always
present, i.e. (i → i) ∈ Gc and (i → i) ∈ Gp . We will further
denote by pa(j,G) all nodes that can influence node j within graph
G. Formally,

pa(j,G) = {i ∈ [n]|(i → j) ∈ G}.

Then, given influence graphs Gc and Gp , we limit the opinion
dynamics so that the following holds for all i, j ∈ [n]:

Dp→c = Dc→p = 0n×n

Dc→c
i j ∝

δ
[Gc ]
i j + δi jϵγω

ϵ + d
(
ci ∥c j

) and D
p→p
i j ∝

δ
[Gp ]
i j + δi jϵγω

ϵ + d
(
pi ∥pj

)

where δ [G]

i j =

{
1 (i → j) ∈ G

0 o/w
is a Kronecker indicator.

Coupled Network Castor and Pollux (CoNCaP). Continuing
with our teenage “cool” opinion, we must recognise that as teenagers
grow they do attempt to reconcile their “coolness” opinion extremes.
As a result, these extremes will not developed independently, as
the previous two variations of our model imply. Rather, a certain
coupling and attraction between the extremes will appear. In our for-
malism, this means that Castor-i and Pollux-i will be co-dependent
in some sense. To capture this, we allow diagonals of dynamics
sub-matrices Dc→p and Dp→c to vary.

We will distinguish between two variations of this constraint: a
persistent CoNCaP-ϕ, where the Castor-Pollux influence is fixed;
and the dynamic CoNCaP-β , where the influence strength develops
similarly to the influence withing the sets of Castores and Pullucis,
though may be weighted.

CoNCaP-ϕ: Here, we set a single parameter ϕ ∈ (0, 1), and limit
the dynamics D[x] as follows for all i, j ∈ [n]:

D
p→c
i j = Dc→p = ϕδi j

Dc→c
i j ∝

(1 − ϕ)
(
δ
[Gc ]
i j + δi jϵγω

)
ϵ + d

(
ci ∥c j

)
D
p→p
i j ∝

(1 − ϕ)
(
δ
[Gp ]
i j + δi jϵγω

)
ϵ + d

(
pi ∥pj

)
CoNCaP-β: Although we will retain the ability to weigh the

influence via the β ∈ (0, 1) parameter, the mutual influence in a
C-i-P pair will no longer be fixed. Rather, it will vary and go through
the same normalisation process as any other influence. Thus, the
dynamics are described by the following constraints for all i, j ∈ [n]:

D
p→c
i j = Dc→p ∝

βδi j

ϵ + d
(
ci ∥pj

)
Dc→c
i j ∝

(1 − β)
(
δ
[Gc ]
i j + δi jϵγω

)
ϵ + d

(
ci ∥c j

)
D
p→p
i j ∝

(1 − β)
(
δ
[Gp ]
i j + δi jϵγω

)
ϵ + d

(
pi ∥pj

)
where δi j is the standard Kronecker delta function, so that δi j = 1 if
and only if i = j.

Fully Coupled Network Castor and Pollux (FCoNCaP). Step-
ping one more step towards acknowledging that Castor-i and Pollux-i
are none other than two extremes of the same interval opinion, we
explore a dynamic where the coupling is taken into account within
Castor (Pollux) social network, Gc (respectively, Gp ), influence cal-
culation. Namely, if (i → j) is an edge in the influence graph Gc

(respectively, Gp ), then the opinion of c j (respectively, pj ) will be
adjusted towards the entire interval of opinions between ci and pi .

Intuitively, this is a teenager’s attempt to adapt her opinion to
the entire expression range of her idol, following both the on-stage
and (the apparent) daily life-style. Formally, let us define proximity
opinion points ypi j and yci j as follows:

αci j = arg min
α ∈[0,1]

d
(
αci + (1 − α)pi ∥c j

)
α
p
i j = arg min

α ∈[0,1]
d
(
αpi + (1 − α)ci ∥pj

)
yci j = αci jci + (1 − αci j )pi

y
p
i j = α

p
i jpi + (1 − α

p
i j )ci

Figure 1 shows how proximity points are calculated, when C-i-P
influences C-j-P. Notice that calculating most proximal point ypi j
results essentially in projecting pj onto the line that passes through
ci and pi . At the same time, the proximal point yci j coinsides with ci .

Now, extending the CoNCaP-β variation, we rewrite the opinion
dynamics constraints to become for all i, j ∈ [n]:
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Figure 1: Calcu-
lating proximity
opinion points
y
p
i j and yci j .

c j

pj

yci j = ci
pi

y
p
i j

D
p→c
i j ∝ (1 − δi j )

(1 − β)δ
[Gc ]
i j (1 − αci j )

ϵ + d
(
yci j ∥c j

) + δi j
β

ϵ + d
(
pi ∥c j

)
Dc→c
i j ∝

(1 − β)
(
δ
[Gc ]
i j + δi jϵγω

)
αci j

ϵ + d
(
yci j ∥c j

)
with Dc→p

i j , Dp→p
i j defined symmetrically to Dp→c

i j and Dc→c
i j .

4 EXPERIMENTAL STUDY: SETUP
The range of questions regarding an opinion dynamics commonly
includes questions of convergence per se and the properties of the
convergence set. The former can be used to simulate social stability,
rigidity and consensus [6, 14], while the latter is brought about to
model political polarisation, community detection, and stock pri-
ces [2, 19, 21]. However, as was mentioned in Section 2, these works
concentrate on opinions represented by a (multidimensional) point,
following a well-developed geometric intution. E.g. community
members develop a degree of commonality that is readily captured
by clusters their point-opinions. Following the same intuition, politi-
cal polarisation is conveniently captured by population clustering,
and the degree of polarisation is readily produced by clustering sco-
res. In particular, if the Silhouette score[22] 1 of such a clustering is
concentrated around 1(one), it is understood that the society is extre-
mely polarised and it will be difficult to find a political compromise.
Alas, it is much harder to cluster non-atomic entities like intervals.
In fact, the standard intuition of a polarised society no longer works
in our model. This is also true for other opinion dynamics questions.

Thus, before we proceed to formal model analysis and applica-
tions, we first need to rebuild a natural intuition wrt meaning and
implications of interval-opinion dynamics outcomes. In this section
we build such an intuition by redeveloping polarisation interpretati-
ons, and provide some experimental data to support them.

4.1 General Experimental Setup
For each simulation run in our preliminary set of experiments we
are generating random interval opinions in R3 (so that d = 3, and
ci ,pi ∈ S2 for all i ∈ [n]), and impose distinct social connectivity
graphs Gc and Gp on Castores and Pollucis respectively. Social

1Commonly used in machine learning, the Silhouette score of a point a measures the
ratio between the average distance between a and other points within a cluster to the
best average distance between a and points of another cluster.

connectivity graphs Gc and Gp are a result of a random graph gene-
ration deemed well suited for social network studies. In particular,
our simulation is capable to employ Barabasi-Albert [1], Erodos-
Renyi [4, 10], Watts-Strogatz [27] and Kleinberg’s Small World [16]
graph generators. However, for our initial experimental data set we
chose to concentrate on Barabasi-Albert graphs.

Simulation runs are grouped into series characterised by settings
of model parameters and the number of Castore-Pollux pairs. Each
series includes at least 50 runs – i.e. each setting of model parameters
is tested for 50 times with different initial joint state x and social
grphs Gc and Gp . Where possible we ensure that we can match para-
meter characteristics across series that belong to different dynamic
models. Behavour of each series is automatically analysed using a
set of measures, as described in the next sub-section. Comparative
statistics are then drawn, and we interpret those comparisons as the
difference in behavioural patterns between opinion dynamic models.

4.2 Polarisation Challenge
It is of current interest to study whether, and when, the introduction
of persistent or prolonged opinion injection into a social network has
a polarisation effect. That is, the difference in opinions of various
network participants increases, and sub-communities gravitate to-
wards the injected opinion sources. To study the effects of persistent
opinion injection (aka polarisation), we introduce a secondary (rand-
omised) augmentation into the social graphs of Castores and Pollucis.
Specifically, we create a fixed percentage of strictly influencing (only
outgoing edges), “stubborn” opinions. We then polarise/extremise
the stubborn opinions by shifting them towards distinct and distant
reference points. This effectively creates a prolonged ijection of
those reference point opinions into the network. Opinion dynamics
simulation then reveals the effect of this injection.

We proceed as follows. Given an initial joint configuration x, its
associated social graphs Gc and Gp , and two polar locations P+ =
(1.0, 0.0, 0.0) and P− = (0.0, 0.5, 0.5), we introduce the following
randomised modifications (and their parameters) before we simulate
the dynamics:

Opinion Injection Ratio ρ: Ensure that both Gp and Gc have
ρ ∈ [0, 1] proportion of nodes that have only outgoing edges (they in-
fluence, but do not get influenced back) – termed stubborn extremes.
If a graph does not contain a sufficient number of stubborn extremes,
select additional nodes at random and invert their social connectivity
to make them stubborn; If a graph contains more than a given ratio
of stubborn extremes, select a necessary portion of them at random
and randomise the social connectivity direction of the selected nodes
(to “de-stubborn” them).

Polarisation Coefficient η: Shift the stubborn opinions, i.e. those
with at least one end of the interval-opinion being a stubborn extreme,
towards one of the poles (chosen at random) W.l.o.g. let’s assume that
the stubborn extreme is ci , then it is modifed to either ηci + (1−η)P+
or ηci + (1 − η)P−

The polarising shift of stubborn opinions comes in two flavours:
a) Coherent Extremisation, where both ends of a stubborn interval-
opinion are augmented towards the same pole; b) (Simple) Polar
Extremisation, where only the stubborn extreme is shifted, and both
interval-opinion ends are stubborn, then they are shifted indepen-
dently.
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4.3 Measuring the effects of polarisation
In a standard situation, where any opinion is represented by a single
point and no coupling occurs, polarisation has a detrimental effect
that is largly well intuited and understood. E.g. if we say that an elec-
torate set of opinions is highly polarised, we would generally mean
that it is easily clustered into tight groups around distinct candidate
opinions. In clustering terms, we would say that the distribution
of the Silhouette score is highly concentrated around 1. We will
then intuitively understand that a voter would be anxious about the
elections’ outcome as any, but a very specific candidate, would be
seen as a Doom’s Day for that voter.

However, if opinions are represented by intervals, the intuition of
point-based polarisation and the Silhouete score expressing overall
anxiety with election outcomes does not apply any longer. This is
because the size of the opinion interval matters, and not just the
distance between voter and candidate opinions. Consider the sim-
plest situation where a voter’s interval opinion and candidate point
opinions lay on the same line, and inspect the variety of possibi-
lities in Figure 2. It is easy to see that the anxiety would grow in
subsequences of example intervals 1-4, 5-11 and 12-15.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2: Intuition for
anxiety, ∇: examples
of interval opinion be-
tween two candiate ex-
tremes.

We need to capture how anxious each voter is with the difference
between the best and the worst candidate from her point of view.
Voters 5-11 in Figure 2 clearly demonstrate the impact of interval
size. Both options are equally distant from the interval, so a voter
would be indifferent between either candiate prevailing. However,
we intuitively understand that voter-5 experiences far less anxiety
than voter-9. On the other hand, voter-11 may be simply inunda-
ted by the distance to any candidate to even care, so the anxiety
level may drop for him. While several measurements that would cor-
rectly capture these examples are possible, we will be taking a leaf
from [15], and concentrate on entropy-based measurements. Recall,

the two basic entropic functions are H (x1, . . . ,xn ) = −
n∑
i=1

xi logxi

and h(x1, . . . ,xn ) = H (
x1
x , . . . ,

xn
x ), where x =

n∑
i=1

xi and xi ≥ 02.

Let O denote the set of all C-i-P opinions, where either ci or
pi is stubborn in their respective social graphs. Denote v a C-
j-P opinion that is not in O , and consider two possible metrics

2We follow the tradition of taking 0 log 0 = 0

for the distance between intervals o ∈ O and v < O: d1(o∥v) =
min{d(yci j , c j ),d(y

p
i j ,pj )}; and d2(o∥v) = max{d(yci j , c j ),d(y

p
i j ,pj )}.

Based on these metrics we define the following two types of opinion
discrepancies.
External discrepancies: smin(v) = min

o∈O
d1(o∥v),

lmin = max
o∈O

d1(o∥v), and lmax = max
o∈O

d2(o∥v).

Internal opinion discrepancies: sc∗ = mino∈O d(yci j , c j ), and s
p
∗ =

mino∈O d(y
p
i j ,pj ). In addition, denote bym = d(c j ,pj ) the standard

distance between the endpoints of the C-j-P opinion. We will inves-
tigate the following functions as measure of voter anxiety, ∇(v), in a
polarised society.
Internal Anxiety that captures the tension between the two end-
points an interval-opinion as they are subjected to different social
influences:

∇h,∗ = h(sc∗ ,m, s
p
∗ )

External Anxiety that captures the discordance between the most
and the least attractive subborn opinion:

∇h,min = h
(
smin,m(v), lmin

)
∇h,max = h

(
smin,m(v), lmax

)
Notice how all expressions above handle dependency of the anxiety
on how relaxed is the C-j-P opinion, as expressed by the size of
its interval. Finally, we define the expected (population) anxiety
E
[
∇
]
= 1

n−|O |

∑
v<O

∇(v).

5 EXPERIMENTAL STUDY: RESULTS
First, let us address the issue of the chosen anxiety and contentment
measures being appropriate. We begin by noticing that the entropy
expression of ∇h,∗,∇h,min and ∇h,max reflect well the intuition
of Figure 2. Now, this by itself is not enough, and it is necessary
to ensure that the measure is actually influenced by the relevant
parameters of a model. ANOVA analysis of our experimental data
showed that our entropy-based anxiety expression strongly correlates
with social and personal influence parameters ϕ, β and ϵγω with
extremely low p-values. Entropic anxiety does not correlate with the
initial polarisation coefficient η, or (and this is quite surprising) the
opinion injection ratio ρ. In other words, entropic anxiety reflects
only the innate tendency of opinion dynamics to create tension of
opinion discrepancies, but it does not depend on how aggresively
polar opinions are injected into a society. Only the end-effect, how
well the polar opinions take hold, is captured by the entropic anxiety.

Now, having established our measurement technique as a well
tuned tool, we can study the effects of various model parameters on
the expected (social) anxiety. One of the key questions is whether
the size of a society makes it easier or harder to polarise it. We
have ran a series of experiments with fixed social graph generator
parameters and increasing number of participating opinions (n=64,
256, 400) and measured the expected anxiety at the point of opinion
dynamics convergence. We observed that the internal anxiety persis-
tently decreases with the size of the network, independently of other
dynamics parameters (see Figure 3a), while the external anxiety
initially increases and then drops off (see Figure 3b) for models with
active Castor-Pollux links. We interpret this as a confirmation of
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Figure 3: Anxiety behaviour as a function of the number of opinions
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(a) Internal anxiety ranges
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(b) External anxiety ranges

Figure 4: Inducible anxiety ranges for various models

larger societies being suscepitible to greater polarisation. This is
because an increased polarisation of interval-opinions is such that:
a) both opinion ends will end-up close to the same polar option,
hence the persistent drop in ∇h,∗; b) the size of the opinion-interval
shrinks more and more, forming “closed communities” within larger
societies – this replicates the natural tendency of hh,min and hh,max

to drop off after the initial surge with the reduction ofm.
Interestingly enough, in models that include Castor-Pollux link

moderation, the internal anxiety is higher. However, the range of anx-
iety levels that various opinion-dynamics can induce remain largly
unchanghed (see Figure 4a). This is not the case for the external
anxiety, however. There we see clearly that the range of inducable
anxieties shrinks towards its mean as the size of the society increases
(Figure 4b). In other words, in a larger society it is less likely that
you would be subjected to extremely high or low disappointments
from, for example, an election process. Rather, your level of anxiety
will be guaranteed – this is a known sociological phenomenon: pe-
ople can either extremely thrive or suffer in small groups, but in a
large society the misery is guaranteed.

6 CONCLUSIONS
In this paper we have introduced a new concept of an interval-opinion
dynamics, where a single opinion is non-atomic, as opposed to the
classical opinion modelling. In fact, the non-atomic nature of the
opinion is critical in our model and can not be replicated via the con-
cepts of opinion indifference or uncertainty. To initiate the discussion

and the use of interval-opinions we study its behaviour wrt society
polarisation under persistent opinion injection. To this end, we deve-
lop an interval-based polarisation measure, experimentally show its
relevance and its intuitive implications wrt social polarisation.
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