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Abstract. Recently, there has been a surge in interest in safe and robust
techniques within reinforcement learning (RL). Current notions of risk
in RL fail to capture the potential for systemic failures such as abrupt
stoppages from system failures or surpassing of safety thresholds and the
appropriate responsive controls in such instances. We propose a novel
approach to risk minimisation within RL in which, in addition to taking
actions that maximise its expected return, the controller learns a policy
that is robust against stoppages due to an adverse event such as an
abrupt failure. The results of the paper cover fault-tolerant control in
worst-case scenarios under random stopping and optimal stopping, all
in unknown environments. By demonstrating that the class of problems
is represented by a variant of stochastic games, we prove the existence
of a solution which is a unique fixed point equilibrium of the game and
characterise the optimal controller behaviour. We then introduce a value
function approximation algorithm that converges to the solution through
simulation in unknown environments.

Keywords: Robust optimal stopping, reinforcement learning, stochastic
game.

1 Introduction

A significant amount of focus within reinforcement learning (RL) is now being
placed on safe execution, robust control, fault-tolerance and risk-minimisation
(Garcıa and Fernández, 2015). Driving this interest is an increase in application
of RL in real-world environments and industrial applications such as traffic light
control (Arel et al., 2010), robotics (Deisenroth et al., 2013), autonomous vehicles
(Shalev-Shwartz et al., 2016) and healthcare (Gottesman et al., 2019). Applying
RL in various environments requires safe operation of autonomous agents is
ensured. At present however, such frameworks within RL are restricted to models
in which the agent modifies the state process using an expectation measure which
is altered to accommodate a predefined notion of risk e.g. H∞ control (Morimoto
and Doya, 2001). Other notions of risk include coherent risk, conditional value
at risk (CVar) (Tamar et al., 2015).

There are numerous instances in which controllers are required to act in sys-
tems which suffer the potential for random stoppages or failures that produce
catastrophic outcomes (Garcıa and Fernández, 2015). Examples include, in fi-
nance, optimal trading under random counterparty risk (Jiao and Pham, 2011),
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and in control systems, optimal robotic control with random sensor failure and
helicopter control under engine failure (Abbeel et al., 2010). Consequently, when
using RL in environments that present potential issues of safety, the important
question of how to control the system in a way that is robust against faults
that lead to catastrophic events arises. An additional issue in matters of safety
is when to optimally stop the system with concern for risk of adverse events
(e.g. when to sell all asset holdings with concern for financial ruin). Despite its
importance however, current notions of risk do not offer a method of mitigating
risk by selectively stopping the system.

To this end, we for the first time construct a method that enables an RL
controller to determine an optimal sequence of actions that is robust against
failures that lead to adverse events. In order to find the optimal control policy,
it is necessary to determine a stopping criterion that stops the system which
produces a worst-case scenario. Secondly, we construct a method that enables
an RL agent to determine when to stop the system in order to maximise its
expected payoff in the presence of adverse risk. As we show, each problem admits
a two-player stochastic game (SG) representation in which one of the players is
delegated the task of modifying the system dynamics through its actions and the
other player has the task of stopping the system under an adversarial criterion.

We perform a formal analysis of an SG between a ‘controller’ and a ‘stopper’.
Under this interpretation, the outcome is determined by a controller that affects
the state process through its actions whilst playing against an adversary that
has the right to choose when to stop the game. This produces a framework that
finds an optimal sequence of actions that is robust against stoppages at times
that pose adverse risk. The notion of risk is defined in the worst-case scenario
sense — given the complete set of probability distributions, the agent considers
the worst-case in assessing the expected payoff.

These results tackle optimal stopping problems (OSPs) under worst-case sce-
narios. OSPs are a subclass of optimal stochastic control (OSC) problems in
which the goal is to determine a criterion for stopping the system at a time that
maximises some state-dependent payoff (Peskir and Shiryaev, 2006). Despite
the fundamental relevance of risk in RL, current iterative methods in OSPs
in unknown environments are restricted to risk-neutral settings (Tsitsiklis and
Van Roy, 1999) and do not permit the inclusion of a controller that modifies the
dynamics. Introducing a notion of risk (generated adversarially) adds consider-
able difficulty as the solution concept is now an SG saddle point equilibrium,
the existence of which must be established.

As we show, our framework provides an iterative method of solving worst-case
scenario OSPs in unknown environments. The framework is developed through
a series of theoretical results: first, we establish the existence of a value of the
game which characterises the payoff for the (saddle point) equilibrium. Second,
we prove a contraction mapping property of a Bellman operator of the game
and that the value is a unique fixed point of the operator. Third, we prove
the existence and characterise the optimal stopping time. We then prove an
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equivalence between the game of control and stopping and worst-case OSPs and
show that the fixed point solution of the game solves the OSP.

Finally, using an approximate dynamic programming method, we develop
a simulation-based iterative scheme that computes the optimal controls. The
method applies in settings in which neither the system dynamics nor the reward
function are known. Hence, the agent need only observe its realised rewards by
interacting with the environment.

1.1 Related Work

The coverage of FT within RL is extremely limited. In (Zhang and Gao, 2018)
RL is applied to tackle systems in which faults might occur with the occurrence
of a fault incurring a large cost. Similarly, RL is applied to a problem in (Yasuda
et al., 2006) in which an RL method for Bayesian discrimination which is used to
segment the state and action spaces. Unlike these methods in which infrequent
faults from the environment generate negative feedback, our method uses a game-
theoretic framework to simulate faults leading to an FT trained policy.

Our main results are centered around a minimax proof that establishes the
existence of a value of the game. This is necessary for simulating the stopping
action to induce fault-tolerance. Although minimax proofs are well-known in
game theory (Shapley, 1953; Maitra and Parthasarathy, 1970; Filar et al., 1991),
replacing a player’s action set with stopping times necessitates a minimax proof
(which now relies on a construction of open sets) which markedly differs to the
standard methods within game theory. Additionally, crucial to our analysis is
the characterisation of the adversary optimal stopping time (Theorem 3).

A relevant framework is a two-player optimal stopping game (Dynkin game)
in which each player chooses one of two actions; to stop the game or continue
(Dynkin, 1967). Dynkin games have generated a vast literature since the setting
requires a markedly different analysis from standard stochastic game theory. In
the case with one stopper and one controller such as we are concerned with, the
minimax proof requires a novel construction using open sets to cope with the
stopping problem for the minimax result.

Presently, the study of optimal control that combines control and stopping
is limited to a few studies e.g. (Chancelier et al., 2002). Similarly, games of
control and stopping have been analysed in continuous-time in specific contexts
e.g. linear diffusions (Karatzas and Sudderth, 2006), geometric Brownian motion
(Bayraktar et al., 2011) and jump-diffusions (Baghery et al., 2013; Mguni, 2018).
In these analyses, all aspects of the environment are known and the controller
affects the dynamics of a continuous diffusion process. In general, under these
methods, solving these problems requires computing analytic solutions to non-
linear partial differential equations which are typically insoluble.

There is a plethora of work on OSPs in continuous and discrete-time (Peskir
and Shiryaev, 2006). Tsitsiklis and Van Roy (1999) use approximate dynamic
programming methods to construct an iterative scheme to compute the solution
of an OSP. Our results generalise existing analyses to strategic settings with
both a controller and an adversarial stopper which tackles risk within OSPs.
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1.2 Organisation

The paper is organised as follows: in Sec. 2, we introduce some relevant mathe-
matical preliminaries and give a canonical description of both the fault-tolerant
RL problem and the OSP under worst-case scenarios. In Sec. 3, we provide il-
lustrative examples for each problem within the context of finance and RL. In
Sec. 4, we introduce the underlying SG framework which we use within the main
theoretical analysis which we perform in Sec. 5. Lastly in Sec. 6, we develop an
approximate dynamic programming approach that enables the optimal controls
to be computed through simulation, followed by some concluding remarks.

2 Canonical Description

In this setting, the state of the system is determined by a stochastic process
{st|t = 0, 1, 2, . . .} whose values are drawn from a state space S⊆ Rp for some
p ∈ N. The state space is defined on a probability space (Ω,B, P ), where Ω is the
sample space, B is the set of events and P is a map from events to probabilities.
We denote by F= (Fn)n≥0 the filtration over (Ω,B, P ) which is an increasing
family of σ−algebras generated by the random variables s1, s2, . . ..

We operate in a Hilbert space V of real-valued functions on L2, i.e. a com-
plete1 vector space which we equip with a norm ∥ · ∥ : V → R>0 × {0} given
by ∥f∥µ :=

√
Eµ[f2(s)] and its inner product ⟨f, fT ⟩µ := Eµ

[
f(s)fT (s)

]
where

µ : B(Rn) → [0, 1] is a probability measure. The problem occurs over a time in-
terval [0,K] where K ∈ N×{∞} is the time horizon. A stopping time is defined
as a random variable τ ∈ {0, 1, 2, . . .} for which {ω ∈ Ω|τ(ω) ≤ t} ∈ Ft for any
t ∈ [0,K] — this says that given the information generated by the state process,
we can determine if the stopping criterion has occurred.

We now describe the two problems with which we are concerned that is, FT
RL and OSPs under worst-case scenarios. We later prove an equivalence between
the two problems and characterise the solution of each problem.

2.1 Fault-Tolerant Reinforcement Learning

We concern ourselves with finding control policy that copes with abrupt system
stoppages and failures at the worst times in problems. In the current setting, the
reward and transition functions are assumed a priori unknown. Unlike standard
methods in RL and game theory that have fixed time horizons (or purely random
exit times) in the following, the process is stopped by a fictitious adversary that
uses a stopping strategy to decide when to stop given its observations of the state.
In order to generate an FT control, we simulate the adversary’s action whilst
the controller seeks to determine its optimal policy. This as we show, induces a
form of control that is an FT best-response control.

A formal description is as follows: an agent exercises actions that influence
the sequence of states visited by the system. At each state, the agent receives a
1 A vector space is complete if it contains the limit points of all its Cauchy sequences.
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reward which is dependent on the state. The agent’s actions are selected by a
policy π : S×A→ [0, 1] — a map from the set of states S and the set of actions
A to a probability. We assume that the action set is a discrete compact set and
that the agent’s policy π is drawn from a compact policy set Π. The horizon of
the problem is at most T but the process may be terminated earlier at some (F−
measurable) stopping time at which point the agent receives a terminal reward.

The agent’s performance function is given by:

Jk,π[s] = E

[
k∧T∑
t=0

γtR(st, at) + γk∧TG(sk∧T )

∣∣∣∣∣s0 = s

]
, (1)

where a ∧ b := min{a, b}, E is taken w.r.t. the transition function P and the
controller’s policy π ∈ Π. The performance function (1) consists of a reward
function R : S× A → R which quantifies the agent’s immediate reward when
the system transitions from one state to the next, a bequest function G : S→ R
which quantifies the reward received by the agent when the system is stopped and
γ ∈ [0, 1[, a discount factor. We assume R and G are bounded and measurable.

The problem we consider is the following:
Find (k̂, π̂) ∈ T×Π and J k̂,π̂[s] s.th.

max
π∈Π

(
min
k∈T

Jk,π[s]

)
= J k̂,π̂[s], (2)

where the minimisation is taken pointwise and T ⊆ {0, 1, 2 . . .} is a set of
(F−measurable) stopping times.

Hereon, we employ the following shorthand R(s, a) ≡ Ra
s for any s ∈ S, a ∈ A.

The dual objective problem in (2) consists of finding both a stopping time
that minimises J and an optimal policy that maximises J . By considering the
tasks as being delegated to two individual players, the problem becomes an SG.
The SG occurs between a ‘controller’ that seeks to maximise J by manipulating
state visitations through its actions and an adversary or ‘stopper’ that chooses
a time to stop the process to minimise J (i.e. at the worst possible time). The
structure of the game combines an OSP and a Markov decision process (MDP).
We consider a setting in which neither player has up-front knowledge of the tran-
sition model or objective function but each only observes their realised rewards.

2.2 Robust Optimal Stopping

The second problem we consider is robust optimal stopping. In OSPs, the goal is
to determine a criterion for stopping the system at a time that maximises some
state-dependent payoff. OSPs are ubiquitous in finance e.g. for options pricing
(Pham, 1997) and in economics for characterising optimal market entry/exit
strategies (Kruse and Strack, 2015). OSPs are closely related to multi-armed
bandits and clinical trials (Jennison and Turnbull, 2013).

OSPs in worst-case scenarios regularly arise in economic decision-making
when an agent seeks to determine an optimal time to exit the financial market
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(Young, 2004) or terminate some costly industrial process (Zhao and Chen, 2009)
under worst-case scenarios. Examples of worst-case OSPs are agents that seek to
determine when to arrest a costly industrial process or experiment (e.g. clinical
trials) and, within finance, investors that seek to determine market entry/exit
decisions; each under worst-case scenarios.

We later prove an equivalence of SGs of control and stopping and robust
OSPs, the latter of which we now introduce:

The problem involves an agent that seeks to find an optimal stopping time
τ̂ under the adverse non-linear expectation EP := min

π∈Π
EP,π such that:

τ̂ ∈ argmax
τ∈T

EP [Yτ ] = argmax
τ∈T

(
min
π∈Π

EP,π [Yτ ]

)
, (3)

where Yk :=
∑k∧T

t=0 γtR(st, at) + γk∧TG(sk∧T ).
The problem describes an agent that seeks to find an optimal stopping time

under a worst-case scenario.

3 Examples

To elucidate the ideas, we now provide applications of the problems.
As the following example illustrates, the framework applies to actuator failure

within RL applications.

3.1 Example: Control with random actuator failure

Consider an adaptive learner, for example a robot that uses a set of actutors
to perform actions. Given full operability of its set of actuators, the agent’s
actions are determined by a policy π : S×A → [0, 1] which maps from the state
space S and the set of actions A to a probability. In many systems, there exists
some risk of actuator failure at which point the agent thereafter can affect the
state transitions by operating only a subset of its actuators. In this instance, the
agent’s policy determines actions using only a subset of its action space Â ⊂ A. In
this scenario, the agent is now restricted to policies πpartial : S×Â → [0, 1] which
map from from a subset of operative actuators — thereafter its expected return
is given by the value function V πpartial . In order to perform robustly against
actuator failure, it is therefore necessary to consider a set of stopping times
T⊆ {0, 1, 2, . . .} after which, the robot can no longer select actions that require
functionality of the full set of actuators. In particular, in order to construct a
robust policy against catastrophic outcomes, it is useful to consider actuator
failure in worst-case scenarios.

The problem involves finding a pair (τ̂ , π̂) ∈ T× Π which consists of a
stopping time and control policy s.th.

min
k′∈T

(
max
π′∈Π

E
[
Hπ′,k′

(s)
])

= E
[
H π̂,τ̂ (s)

]
,
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where at ∼ π′ and Hπ,k(s) :=
∑k∧∞

t=0 γtR(st, at) + γk∧∞V πpartial(sk∧∞). The
resulting policy π̂ is robust against actuator failure in worst-case scenarios.

3.2 Example: Optimal selling in an adversarial market

An investor (I) seeks to exit the market (sell all market holdings) at an optimal
stopping time τ ∈ T. It is assumed that the market acts in such a way to
minimise risk-free profit opportunities for the investor.2 When I exits the market,
I receives a return of λτXτ where Xt ≡ X(t, ω) ∈ [0,∞[×Ω is a Markov process
that determines the asset price at time t and λ ∈]0, 1] is I’s discount factor.
Classically, the exit time is computed as the solution to the following problem:

max
k∈T

EP

[
γkXk

]
. (4)

In (4), the expectation is taken with respect to a risk-neutral measure P . How-
ever, the above formulation does not include the adversarial effect of the market.
To accommodate this, we modify the objective to the following:

max
k∈T

(
min
π∈Π

EP,π

[
γkXk

])
. (5)

In (5), the worst-case dynamics are induced by choice of adversarial probability
measure π that alters the neutral measure P over which the objective expectation
is defined. This captures the observed effect that financial markets adversarially
eliminate investment opportunities. Now the goal of the agent is to find an
optimal time to exit a financial market under an adversarial market scenario.

4 Stochastic games

Embedded within problem (2) is an interdependence between the actions of the
players — that is, the solution to the problem is jointly determined by the actions
of both players and their responses to each other. The appropriate framework to
tackle this problem is therefore an SG (Shapley, 1953). An SG is an augmented
MDP which proceeds by two players tacking actions that jointly manipulate the
transitions of a system over K rounds which may be infinite. At each round,
the players receive some immediate reward or cost which is a function of the
players’ joint actions. The framework is zero-sum so that a reward for player 1
simultaneously represents a cost for player 2.

Formally, a two-player zero-sum stochastic game is a 6−tuple
⟨S,Ai∈{1,2}, P,R, γ⟩ where S= {s1, s2, . . . , sn} is a set of states, Ai is an action
set for each player i ∈ {1, 2}. The map P : S×A1 ×A2 ×S→ [0, 1] is a Markov
transition probability matrix i.e. P (s′; s, a1, a2) is the probability of the state
s′ being the next state given the system is in state s and actions a1 ∈ A1 and
a2 ∈ A2 are applied by player 1 and player 2 (resp.). The function R : S×A1×A2

2 This is the no arbitrage principle (Carr and Madan, 2005).
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is the one-step reward for player 1 and represents one-step cost for player 2 when
player 1 takes action a1 ∈ A1 and player 2 takes action a2 ∈ A2 and γ ∈ [0, 1[ is
a discount factor. The goal of each player is to maximise its expected cumulative
return — since the game is antagonistic, the total expected reward received by
player 1 which we denote by J , represents a total expected cost for player 2.

Denote by Ht≤K the set of all finite histories and by H≡ ∪t≤KHt so that
for each hj≤K = ((s0, (a1, a2)), (s1, (a1, a2)), . . . , ((sj , (a1, a2)) ∈ Hj which is a
sequence of state and joint action pairs. For each player i ∈ {1, 2}, a pure strategy
is a map πi : (H) × Ai → [0, 1] that assigns to every finite history hj≤K ∈ H

an action π(h) in Ai. Similarly, for each player i ∈ {1, 2}, a behavioural strategy
is a map πi : H× Ai → [0, 1] that assigns to every finite history h ∈ H a
probability distribution π(h) in Ai. We denote the space of strategies for each
player i ∈ {1, 2} by Πi.

For SGs with Markovian transition dynamics, we can safely dispense with
path dependencies in the space of strategies.3 Consequently, w.log. we restrict
ourselves to the class of behavioural strategies that depend only on the current
state and round, namely Markov strategies, hence for each player i, the strategy
space Πi consists of strategies of the form πi : S× Ai → [0, 1]. It is well-known
that for SGs, an equilibrium exists in Markov strategies even when the opponent
can draw from non-Markovian strategies (Hill, 1979).

In SGs, it is usual to consider the case A1 = A2 so that the players’ actions
are drawn from the same set. We depart from this model and consider a game
in which player 2 can choose a time to stop the process so that the action set for
player 2 is the set T⊆ {0, 1, 2, . . .} which consists of (F−measurable) stopping
times. In this setting, player 1 can manipulate the system dynamics by taking
actions drawn from A1 (we hereon use A) and at each point, player 2 can decide
to intervene to stop the game.

Let us define by val+[J ] := min
k∈T

max
π∈Π

Jk,π the upper value function and by

val−[J ] := max
π∈Π

min
k∈T

Jk,π, the lower value function. The upper (lower) value
function represents the minimum payoff that player I (player II) can guarantee
itself irrespective of the actions of the opponent.

The value of the game exists if we can commute the max and min operators:

val−[J ] = max
π∈Π

min
k∈T

Jk,π[·] = min
k∈T

max
π∈Π

Jk,π[·] = val+[J ]. (6)

We denote the value by J⋆ := val+[J ] = val−[J ] and denote by (k̂, π̂) ∈ T×Π the
pair that satisfies J k̂,π̂ ≡ J⋆. The value, should it exist, is the minimum payoff
each player can guarantee itself under the equilibrium strategy. In general, the
functions val+[J ] and val−[J ] may not coincide.

Should the value J⋆ exist, it constitutes a saddle point equilibrium of the
game in which neither player can improve their payoff by playing some other
control — an analogous concept to a Nash equilibrium for the case of two-player
3 There are some exceptions for games with payoff structures not considered here for

example, limiting average (Ergodic) payoffs (Blackwell and Ferguson, 1968).
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zero-sum games. Thus the central task to establish an equilibrium involves un-
ambiguously assigning a value to the game, that is proving the existence of J⋆.

5 Main Analysis

In this section, we present the key results and perform the main analysis of the
paper. In the main analysis, our first task is to establish the existence of a value
of the game then secondly, we perform analyses that enables us to construct
an approximate dynamic programming method. In particular, we construct a
Bellman operator for the game and show that the operator is a contraction
mapping. We show that the value is unique and that the value coincides with
a fixed point of the Bellman operator. Using these results, we construct an
equivalence between robust OSPs and games of control and stopping.

Our results develop the theory of risk within RL to cover instances in which
the agent has concern for stopping the process at an optimal time. We develop
the theory of SGs to cover games of control and stopping when neither player
has up-front environment knowledge. In particular, we establish the existence of
a value of the game in a discrete-time setting and show that the value can be
obtained using a value-iterative method. This, as we show in Sec. 9, underpins
a simulation-based scheme that is suitable for settings in which the transition
model and reward function is a priori unknown.

5.1 Theoretical Analysis

The purpose of this section is to twofold: our first task is to establish the existence
of a value of the game. Secondly, we perform analyses that enables us to construct
an approximate dynamic programming method. In particular, we construct a
Bellman operator for the game and show that the operator is a contraction
mapping. We show that the value is unique and that the value coincides with
a fixed point of the Bellman operator. Using these results, we construct an
equivalence between robust OSPs and games of control and stopping. We defer
some of the proofs to the appendix.

We now introduce concepts that relate to estimates on the operators of the
game. These concepts will be useful for proving the existence of a fixed point.

Definition 1. An operator T : V→ V is said to be a contraction w.r.t a norm
∥ · ∥ if there exists a constant c ∈ [0, 1[ s.th for any V1, V2 ∈ V we have that:

∥TV1 − TV2∥ ≤ c∥V1 − V2∥. (7)

A central task is to prove that the Bellman operator for the game is a contrac-
tion mapping. Thereafter, we prove convergence to the unique value. Consider
a Borel measurable function which is absolutely integrable w.r.t. the transition
kernel P · then E [J [s′]|Ft] =

∫
S
J [s′]P a

ss′ , where P a
ss′ ≡ P (s′; s, a) is the probabil-

ity of the state s′ being the next state given the action a ∈ A and the current
state is s . In this paper, we denote by (PJ)(s) :=

∫
S
J [s′]P a

sds′ .
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We now introduce the operator of the game which is of central importance:

TJ := min
τ∈T

{
max
a∈A

Ra
s + γ

∑
s′∈S

P a
ss′J

τ,π[s′], G(Sτ )

}
. (8)

The operator T enables the game to be broken down into a sequence of sub
minimax problems. It will later play a crucial role in establishing a value iterative
method for computing the value of the game.

Before performing the analysis on T , we prove the existence of the value:

Theorem 1.

val+[J ] = val−[J ] ≡ J⋆. (9)

Theorem 1 establishes the existence of the game which permits commuting
the max and min operators of the objective (2). Crucially, the theorem secures
the existence of an equilibrium pair (τ̂ , π̂) ∈ T×Π, the value of which is given
by J⋆, the computation of which, is the subject of the next section.

In turn, we can now establish the optimal strategies for each player. To this
end, we now define best-response strategies which shall be useful for further
characterising the equilibrium:

Definition 2. The set of best-response (BR) strategies for player 1 against the
stopping time τ ∈ T (BR strategies for player II against the control policy
π ∈ Π) is defined by π̂ ∈ argmax

π′∈Π
E[Jτ,π′

[·]] (resp., τ̂ ∈ argmin
τ ′∈T

E[Jτ ′,π[·]]).

The question of computing the value of the game remains. To this end, we
now prove the contraction mapping property of the operator T . We then show
that repeatedly applying T produces a sequence that converges to the value.

Proposition 1. The operator T in (8) is a contraction.

Prop. 1 underscores a fixed point property which is stated in the following:

Theorem 2. 1. The sequence (TnJ)∞n=0 converges (in L2).
2. There exists a unique function J⋆ ∈ L2 s.th.:

J⋆ = TJ⋆ and lim
n→∞

TnJ = J⋆. (10)

Theorem 2 establishes the existence of a fixed point of T . Crucially, it under-
pins a value iterative method which we formally develop in Sec. 6.

Definition 3. The pair (τ̂ , π̂) ∈ T×Π is a saddle point equilibrium iff ∀s ∈ S:

J τ̂ ,π̂[s] = max
π∈Π

J τ̂ ,π[s] = min
τ∈T

Jτ,π̂[s]. (11)

A saddle point equilibrium therefore defines a strategic configuration in which
both players play their BR strategies.
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Proposition 2. The pair (τ̂ , π̂) ∈ T×Π consists of BR strategies and constitutes
a saddle point equilibrium.

By Prop. 2, when the pair (τ̂ , π̂) is played, each player executes its BR strat-
egy in response to their opponent. In the context of the problem in Sec. 2, the
strategic response induces risk minimising behaviour by the controller. We now
turn to the existence and characterising the optimal stopping time for player 2.
The following result establishes its existence.

Theorem 3. There exists an F-measurable stopping time:
τ̂ = min

{
k ∈ T

∣∣∣G(sk) ≤ min
k∈T

max
π∈Π

Jk,π[sk]

}
, a.s.

Theorem 3 establishes the existence and characterises the player 2 optimal
stopping time. The stopping time τ̂ is a best-response for player 2 against the
equilibrium policy played by player 1. The theorem plays a vital role in the
robust optimal stopping problem of Sec. 4.

Having shown the existence of the optimal stopping time τ⋆, by Theorem 3
and Theorem 1, we find the following:

Theorem 4. Let τ̂ be the player 2 optimal stopping time defined in (3) and let
τ⋆ be the optimal stopping time for the robust OSP (c.f. (3)) then τ⋆ = τ̂ .

Theorem 4 establishes an equivalence between the robust OSP and the SG
of control and stopping. In particular, any method that computes the optimal
stopping time with the SG provides a solution to the robust OSP.

6 Simulation-Based Value Iteration

We now develop a simulation-based value-iterative scheme. We show that the
method produces an iterative sequence that converges to the value of the game
from which the optimal controls can be extracted. The method is suitable for
environments in which the transition model and reward functions are not known
to either player. Our approach is related to approximated dynamic programming
methods e.g. (Bertsekas, 2008). However, our problem requires generalisation to
an SG involving a controller and stopper which alters the proofs throughout.

The fixed point property of the game established in Theorem 2 immediately
suggests a solution method for finding the value. In particular, we may seek to
solve the fixed point equation (FPE) J⋆ = TJ⋆. Direct approaches at solving
the FPE are not generally fruitful as closed solutions are typically unavailable.

To compute the value function, we develop an iterative method that tunes
weights of a set of basis functions {ϕk : Rp → R|k ∈ 1, 2, . . . D} to approximate
J⋆ through simulated system trajectories and associated costs. Algorithms of
this type were first introduced by Watkins (Watkins and Dayan, 1992) as an
approximate dynamic programming method and have since been augmented to
cover various settings. Therefore the following can be considered as a generalised
Q-learning algorithm for zero-sum controller stopper games.
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Let us denote by Φr :=
∑D

j=1 r(j)ϕj an operator representation of the basis
expansion. The algorithm is initialised with weight vector r0 = (r0(1), . . . , r0(P ))′ ∈
Rd. Then as the trajectory {st|t = 0, 1, 2, . . .} is simulated, the algorithm pro-
duces an updated series of vectors {rt|t = 0, 1, 2, . . .} by the update:

rt+1 = rt + γϕ(st)
(
max
a∈A

Ra
st + γmin {(ϕrt)(st+1), G(st+1)} − (ϕrt)(st)

)
.

Theorem 5 demonstrates that the method converges to an approximation of
J⋆. We provide a bound for the approximation error in terms of the basis choice.

We define the function Q⋆ which the algorithm approximates by:

Q⋆(s) = max
a∈A

Ra
s + γPJ⋆, ∀s ∈ S (12)

We later show that Q⋆ serves to approximate the value J⋆. In particular, we
show that the algorithm generates a sequence of weights rn that converge to a
vector r⋆ and that Φr⋆, in turn approximates Q⋆. To complete the connection,
we then provide a bound between the outcome of the game when the players use
controls generated by the algorithm.

First, we introduce our player 2 stopping criterion which now takes the
form: τ̂ = min{t|G(st) ≤ Q⋆(st)}. We define a orthogonal projection Π and
the function F by the following:ΠQ := argmin

Q̄∈{Φr|r∈Rp}
∥Q̄ − Q∥, FQ := max

a∈A
Ra

s +

γP min{G,Q}. We now state the main results of the section:
Theorem 5. Under (12), rn converges to r⋆ where r⋆ is the unique solution:
ΠF (Φr⋆) = Φr⋆, a.e.

Theorem 6. Let τ̂ = min
{
k ∈ T

∣∣∣G(sk) ≤ (Φr⋆)(sk)
}

, then the following hold:

1. ∥Φr⋆ −Q⋆∥ ≤
(√

1− γ2
)−1

∥ΠQ⋆ −Q⋆∥ ,
2. E

[
J⋆[s]− J τ̃ ,π̃[s]

]
≤ 2[

(1−γ)
√

1−γ2)
] ∥ΠQ⋆ −Q⋆∥.

Theorem 6 says the error bound in algorithm approximation of the value is
determined by the goodness of the projection.

Conclusion
In this paper, we tackled the problem of risk within an RL setting in which
the controller seeks to obtain a fault-tolerant control that is robust to catas-
trophic failures. To formally analyse the problem and characterise the optimal
behaviour, we performed an in-depth analysis of a stochastic game (SG) of con-
trol and stopping. We established the existence of an equilibrium value then,
using a contraction mapping argument, showed that the game can be solved by
iterative application of a Bellman operator. We proved that the method leads to
an approximate dynamic programming algorithm so that the game can be solved
by simulation. By proving an equivalence between the SG and robust optimal
stopping problems, we showed that the method developed in the paper serves to
compute solutions to optimal stopping problems in worst-case scenarios.
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Supplementary Material (Appendix)

Assumptions

Our results are built under the following assumptions:

Assumption A.1. Stationarity: the expectations E are taken w.r.t. a stationary
distribution so that for any measurable function f we have E [f(s)] = E [f(sk)]
for any k ≥ 0.

Assumption A.2. Ergodicity: i) Any invariant random variable of the state pro-
cess is P−almost surely (P−a.s.) a constant.

Assumption A.3. Markovian transition dynamics: the transition probability func-
tion P satisfies the following equality: P (sk+1 ∈ A|Fk) = P (sk+1, A) for any
A ∈ B(Rp).

Assumption A.4. The constituent functions {R,G} in (1) are square integrable:
that is, R,G ∈ L2(µ).

Additional Lemmata

We begin the analysis with some preliminary lemmeta which are useful for prov-
ing the main results.

Definition D.1. An operator T : V → V is non-expansive if ∀V1, V2 ∈ V we
have:

∥TV1 − TV2∥ ≤ ∥V1 − V2∥. (13)

Definition D.2. The residual of a vector V ∈ V w.r.t the operator T : V→ V

is:

ϵT (V ) := ∥TV − V ∥. (14)

Lemma B.1. Define val+[f ] := minb∈B maxa∈A f(a, b) and define
val−[f ] := maxa∈A minb∈B f(a, b), then for any b ∈ B we have that for any
f, g ∈ L and for any c ∈ R>0:∣∣∣∣max

a∈A
f(a, b)−max

a∈A
g(a, b)

∣∣∣∣ ≤ c =⇒
∣∣val−[f ]− val−[g]

∣∣ ≤ c.

Lemma B.2. For any f, g, h ∈ L and for any c ∈ R>0 we have that:

∥f − g∥ ≤ c =⇒ ∥min{f, h} −min{g, h}∥ ≤ c.

Lemma B.3. Let the functions f, g, h ∈ L then

∥max{f, h} −max{g, h}∥ ≤ ∥f − g∥. (15)
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The following estimates provide bounds on the value J⋆ which we use later
in the development of the iterative algorithm. We defer the proof of the results
to the appendix.
Lemma B.4. Let T : V→ V be a contraction mapping in ∥ · ∥ and let V ⋆ be a
fixed point so that TJ⋆ = J⋆ then there exists a constant c ∈ [0, 1[ s.th:

∥J⋆ − J∥ ≤ (1− c)−1ϵT (J). (16)

Lemma B.5. Let T1 : V → V, T2 : V → V be contraction mappings and
suppose there exists vectors J⋆

1 , J
⋆
2 s.th T1J

⋆
1 = J⋆

1 and T2J
⋆
2 = J⋆

2 (i.e. J⋆
1 , J

⋆
2

are fixed points w.r.t T1 and T2 respectively) then ∃c1, c2 ∈ [0, 1[ s.th:

∥J⋆
1 − J⋆

2 ∥ ≤ (1− {c1 ∧ c2})−1
(ϵT1(J)− ϵT2(J)) .

Lemma B.6. The operator T satisfies the following:
1. (Monotonicity) For any J1, J2 ∈ L2 s.th. J1(s) ≤ J2(s) then TJ1 ≤ TJ2.
2. (Constant shift) Let I(s) ≡ 1 be the unit function, then for any J ∈ L2 and

for any scalar α ∈ R, T satisfies T (J + αI)(s) = TJ(s) + αI(s).
The proof uses an application of Lemma B.2.

Proof of Results
Proof of Lemma B.1.

Proof. We begin by noting the following inequality for any f : V× V→ R, g :
V× V→ R s.th. f, g ∈ L we have that for all b ∈ V:∣∣∣∣max

a∈V
f(a, b)−max

a∈V
g(a, b)

∣∣∣∣ ≤ max
a∈V

|f(a, b)− g(a, b)| . (17)

From (17) we can straightforwardly derive the fact that for any b ∈ V:∣∣∣∣min
a∈V

f(a, b)−min
a∈V

g(a, b)

∣∣∣∣ ≤ max
a∈V

|f(a, b)− g(a, b)| , (18)

(this can be seen by negating each of the functions in (17) and using the proper-
ties of the max operator).

Assume that for any b ∈ V the following inequality holds:

max
a∈V

|f(a, b)− g(a, b)| ≤ c (19)

Since (18) holds for any b ∈ V and, by (17), we have in particular that∣∣∣∣max
b∈V

min
a∈V

f(a, b)−max
b∈V

min
a∈V

g(a, b)

∣∣∣∣
≤ max

b∈V

∣∣∣∣min
a∈V

f(a, b)−min
a∈V

g(a, b)

∣∣∣∣
≤ max

b∈V
max
a∈V

|f(a, b)− g(a, b)| ≤ c, (20)

whenever (19) holds which gives the required result.
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Proof of Theorem 1

Proof. We begin by noting the following inequality holds:

val+[J ] = min
τ∈T

max
π∈Π

E[Jτ,π[s]] ≥ max
π∈Π

min
τ∈T

E[Jτ,π[s]] = val−[J ]. (21)

The inequality follows by noticing Jk,π ≤ max
π∈Π

Jk,π and thereafter applying the
mink∈T and maxπ∈Π operators.

The proof can now be settled by reversing the inequality in (21). To be-
gin, choose a sequence of open intervals {Dm}∞m=1 s.th. for each m = 1, 2, . . .
D̄m is compact and D̄m ⊃ D̄m+1 and [0, T ] = ∩∞

m=1D̄m and define τD(m) :=
infk∈Dm E[Jk,π[s0]].

We now observe that:

E[Jτ,π̂[s]]= max
π∈Π

E

τD(m)∑
t=0

γt(R(st, at) +G(sτD(m)))

− E

τD(m)∑
t=τ

γt(R(st, at) +G(sτD(m)))


≥ E

[
JτD(m),π[s]

]
−

∣∣∣∣∣∣E
τD(m)∑

t=τ

γt(R(st, at) +G(sτD(m)))

∣∣∣∣∣∣
≥ E

[
JτD(m),π[s]

]
−

τD(m)∑
t=τ

γt
∣∣E[R(st, at)] + E

[
G(sτD(m))

]∣∣
≥ E

[
JτD(m),π[s]

]
−

τD(m)∑
t=τ

γt (E [|R(s0, ·)|] + E [|G(s0)|])

= E
[
JτD(m),π[s]

]
+ γτD(m)+1 1− γτ−τD(m)

1− γ
c

= lim
m→∞

inf E[JτD(m),π[s]] + lim
m→∞

[
γτD(m)+1 1− γτ−τD(m)

1− γ

]
c ≥ E[Jτ,π[s]],

where we have used the stationarity property and, in the limit m → ∞ and,
in the last line we used the Fatou lemma. The constant c is given by c :=
(E[R(s0, ·)] + E[G(s0)]) ∈ L.

Hence, we now find that

E[Jτ,π̂[s]] ≥ E[Jτ,π[s]]. (22)

Now since (22) holds ∀π ∈ Π we find that:

E[Jτ,π̂[s]] ≥ max
π∈Π

E[Jτ,π[s]]. (23)

Lastly, applying min operator we observe that:

E[J τ̂ ,π̂[s]] ≥ min
τ∈T

max
π∈Π

E[Jτ,π[s]] = val+[J ]. (24)
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It now remains to show the reverse inequality holds:

E[J τ̂ ,π̂[s]] ≤ max
π∈Π

min
τ∈T

E[Jτ,π[s]] = val−[J ]. (25)

Indeed, we observe that

E
[
J τ̂ ,π̂[s]

]
≤ min

τ∈T
E
[
Jτ∧m,π̂[s]

]
+ E

[ ∞∑
t=m

γt (|R(st, at)|+ |G(st)|)

]
(26)

≤ lim
m→∞

[
min
τ∈T

E
[
Jτ∧m,π̂[s]

]
+ c(m)

]
(27)

= min
τ∈T

E
[
Jτ,π̂[s]

]
≤ max

π∈Π
min
τ∈T

E [Jτ,π[s]] , (28)

since γ ∈ [0, 1[,where c(m) := γm

1−γ (E[|R(s0, ·)|] + E[|G(s0)|]) (using the sta-
tionarity of the state process) and where we have used Lebesgue’s Dominated
Convergence Theorem in the penultimate step.

Hence, by (28) we have that:

E
[
J τ̂ ,π̂[s]

]
≤ max

π∈Π
min
τ∈T

E [Jτ,π[s]] = val−[J ]. (29)

Hence putting (24) and (29) together gives:

val−[J ] = max
π∈Π

min
τ∈T

E [Jτ,π[s]]

≥ E[J τ̂ ,π̂[s]] ≥ min
τ∈T

max
π∈Π

E[Jτ,π[s]] = val+[J ]. (30)

After combining (30) with (21) we deduce the thesis.

Proof of Theorem 3.

Proof. For any m ∈ N we have that

max
π∈Π

Jτ,π[s] ≥ max
π∈Π

Jτ∧m,π[s]−
∞∑

t=m

γtmax
π∈Π

(|R(st, at)|+ |G(st)|) .

We now apply the min operator to both sides of (31) which gives:

min
τ∈T

max
π∈Π

Jτ,π[s] ≥ min
τ∈T

max
π∈Π

Jτ∧m,π[s]−
∞∑

t=m

γtmax
π∈Π

(|R(st, at)|+ |G(st)|) .

(31)

After taking expectations, we find that:

E
[
min
τ∈T

max
π∈Π

Jτ,π[s]

]
(32)

≥ E
[
min
τ∈T

max
π∈Π

Jτ∧m,π[s]

]
−

∞∑
t=m

γtE
[
max
π∈Π

(|R(st, at)|+ |G(st)|)
]
. (33)
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Now by Jensen’s inequality and, using the stationarity of the state process (recall
the expectation is taken under π) we have that:

E
[
max
π∈Π

(|R(st, at)|+ |G(st)|)
]

≥ max
π∈Π

E [(|R(st, at)|+ |G(st)|)] = E[|R(s0, ·)|] + E[|G(s0)|]. (34)

By standard arguments of dynamic programming, the value of the game with
horizon n can be obtained from n iterations of the dynamic recursion; in partic-
ular, we have that:

min
τ∈T

max
π∈Π

Jτ∧m,π[s] = TmG(s), (35)

Inserting (34) and (35) into (33) gives:

E
[
min
τ∈T

max
π∈Π

Jτ,π[s]

]
(36)

≥ E [TmG(s)]− c(m) = lim
m→∞

[E [TmG(s)]− c(m)] = E
[
J τ̂ ,π̂[s]

]
where c(m) := γm

1−γ (E[|R(s0, ·)|] + E[|G(s0)|]) so that lim
m→∞

c(m) = 0. Hence, we
find that:

E
[
J τ̂ ,π̂[s]

]
≤ E

[
min
τ∈T

max
π∈Π

Jτ,π[s]

]
. (37)

We deduce the result after noting that by definition of G we have that G(sτ ) =
Jτ,·[sτ ].

The following lemma is a required result for proving the contraction mapping
property of the operator T .

Lemma 1. The probability transition kernel P is non-expansive, that is:

∥PV1 − PV2∥ ≤ ∥V1 − V2∥. (38)

Proof of Lemma 1.

Proof. The proof is standard, we give the details for the sake of completion.
Indeed, using the Tonelli-Fubini theorem and the iterated law of expectations,
we have that:

∥PJ∥2 = E
[
(PJ)2[s0]

]
= E

(
[E [J [s1]|s0])2

]
≤ E

[
E
[
J2[s1]|s0

]]
= E

[
J2[s1]

]
= ∥J∥2,

where we have used Jensen’s inequality to generate the inequality. This completes
the proof.
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Proof of Lemma B.6.

Proof. Part 2 immediately follows from the properties of the max and min op-
erators. It remains only to prove part 1.
We seek to prove that for any s ∈ S, if J ≤ J̄ then

min
τ∈T

{
max
a∈A

Ra
s + γ

∑
s′∈S

P a
ss′J

τ,π[s′], G(Sτ )

}

−min
τ∈T

{
max
a∈A

Ra
s + γ

∑
s′∈S

P a
ss′ J̄

π[s′], G(Sτ )

}
≤ 0

(39)

We begin by firstly making the following observations:
1. For any x, y, h ∈ V

x ≤ y =⇒ min{x, h} ≤ min{y, h}. (40)

2. For any f, g, h ∈ L2∣∣∣∣max
x∈V

f(x)−max
x∈V

g(x)

∣∣∣∣ ≤ max
x∈V

|f(x)− g(x)| . (41)

Assume that J ≤ J̄ , then we observe that:

max
a∈A

{
Ra

s + γ
∑
s′∈S

P a
ss′J

τ,π[s′]

}
−max

a∈A

{
Ra

s + γ
∑
s′∈S

P a
ss′ J̄

π[s′]

}
(42)

≤ γmax
a∈A

{∑
s′∈S

P a
ss′
(
Jτ,π[s′]− J̄π[s′]

)}
= γ

(
(PJ)−

(
P J̄
))

≤ J − J̄ ≤ 0,

where we have used (41) in the penultimate line. The result immediately follows
after applying (40).

Proof of Proposition 1 .

Proof. We wish to prove that:

∥TJ − T J̄∥π ≤ γ∥J − J̄∥. (43)

Firstly, we observe that:∥∥∥∥∥max
a∈A

{
Ra

s + γ
∑
s′∈S

P a
ss′J

τ,π[s′], G(sk)

}
−

(
max
a∈A

{
Ra

s + γ
∑
s′∈S

P a
ss′ J̄

π[s′], Ḡ(sk)

})∥∥∥∥∥
≤ γmax

a∈A

∥∥∥∥∥∑
s′∈S

P a
ss′
(
Jτ,π
s−1[s

′]− J̄π
s−1[s

′]
)∥∥∥∥∥ ≤ γ

∥∥Jτ,π
s−1 − J̄π

s−1

∥∥ ,
using Cauchy-Schwartz (and that γ ∈ [0, 1[) and (41). The result follows after
applying Lemma B.2 and Lemma B.3.
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Proof of Theorem 2

Proof. Part 1: We note that the contraction property of T (c.f. Prop. 1) allows
us to demonstrate that the game has a unique fixed point to which a sequence
(TnJ)∞n=0 converges (in L2). In particular, by Prop. 1 we have that ∥T 2J−TJ∥ ≤
γ∥TJ − J∥ which proves that the sequence (TnJ)∞n=0 converges to a fixed point.

Part 2: We observe that the fixed point is unique since if ∃J,M ∈ L2 s.th.
TJ = J and TM = M we find that ∥M − J∥ = ∥TM − TJ∥ = γ∥M − J∥, so
that M = J (since γ ∈ [0, 1[) which gives the desired result.

Adopting notions in dynamic programming, denote by:

TnJ [s] = min
τ∈T

max
π0,π1,...,πn−1

E

{n−1∧τ}∑
t=0

γtR(st, at) + γnJ(sn∧τ )

 .

We begin the proof by invoking similar reasoning as (26) - (27) to deduce that:

E
[
J τ̂ ,π̂[s]

]
≤ min

τ∈T
E
[
Jτ∧n,π̂[s]

]
+

γn

1− γ
c,

where c := (E[|R(s0, ·)|] + E[|G(s0)|]). Hence,

TnJ [s] ≤ max
π∈Π

min
τ∈T

E [Jτ,π[s]] +
γn

1− γ
c = J⋆[s] +

γn

1− γ
c. (44)

By analogous reasoning we can deduce that:

TnJ [s] ≥ min
τ∈T

max
π∈Π

E [Jτ,π[s]]− γn

1− γ
c = J⋆[s]− γn

1− γ
c. (45)

Putting (44) and (45) together implies:

J⋆[s]− γn

1− γ
c ≤ TnJ [s] ≤ J⋆[s] +

γn

1− γ
c. (46)

By Lemma B.6, i.e. invoking the monotonicity and constant shift properties of
T , we can apply T to (46) and preserve the inequalities to give:

TJ⋆[s]− γn

1− γ
c ≤ Tn+1J [s] ≤ TJ⋆[s] +

γn

1− γ
c. (47)

After taking the limit in (47) and, using the sandwich theorem of calculus, we
deduce the result.

Proof of Theorem 3

Proof. For any m ∈ N we have that:

max
π∈Π

Jτ,π[s]≥ max
π∈Π

Jτ∧m,π[s]−
∞∑

t=m

γtmax
π∈Π

(|R(st, at)|+ |G(st)|) . (48)
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We now apply the min operator to both sides of (48) which gives:

min
τ∈T

max
π∈Π

Jτ,π[s] ≥ min
τ∈T

max
π∈Π

Jτ∧m,π[s]−
∞∑

t=m

γtmax
π∈Π

(|R(st, at)|+ |G(st)|) .

After taking expectations, we find that:

E
[
min
τ∈T

max
π∈Π

Jτ,π[s]

]
(49)

≥ E
[
min
τ∈T

max
π∈Π

Jτ∧m,π[s]

]
−

∞∑
t=m

γtE
[
max
π∈Π

(|R(st, at)|+ |G(st)|)
]
. (50)

Now by Jensen’s inequality and, using the stationarity of the state process (recall
the expectation is taken under π) we have that:

E
[
max
π∈Π

(|R(st, at)|+ |G(st)|)
]

≥ max
π∈Π

E [(|R(st, at)|+ |G(st)|)] = E[|R(s0, ·)|] + E[|G(s0)|]. (51)

By standard arguments of dynamic programming, the value of the game with
horizon n can be obtained from n iterations of the dynamic recursion; in partic-
ular, we have that:

min
τ∈T

max
π∈Π

Jτ∧m,π[s] = TmG(s). (52)

Inserting (51) and (52) into (50) gives:

E
[
min
τ∈T

max
π∈Π

Jτ,π[s]

]
≥ E [TmG(s)]− c(m)

= lim
m→∞

[E [TmG(s)]− c(m)] = E
[
J τ̂ ,π̂[s]

]
, (53)

where c(m) := γm

1−γ (E[|R(s0, ·)|] + E[|G(s0)|]) so that lim
m→∞

c(m) = 0. Hence, we
find that:

E
[
J τ̂ ,π̂[s]

]
≤ E

[
min
τ∈T

max
π∈Π

Jτ,π[s]

]
, (54)

we deduce the result after noting that G(sτ ) = Jτ,·[sτ ] by definition of G.

Proof of Lemma B.4.

Proof. The proof follows almost immediately from the triangle inequality, indeed
for any J ∈ L2:

∥J⋆ − J∥ = ∥TJ⋆ − J∥ ≤ γ∥J⋆ − J∥+ ∥TJ − J∥, (55)

where we have added and subtracted TJ to produce the inequality. The result
then follows after inserting the definition of ϵT (J).
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Proof of Lemma B.5.

Proof. The proof follows directly from Lemma B.4. Indeed, we observe that for
any J ∈ L2 we have

∥J⋆
1 − J⋆

2 ∥ ≤ ∥J⋆
1 − J∥+ ∥J⋆

2 − J∥, (56)

where we have added and subtracted J to produce the inequality. The result
then follows from Lemma B.4.

Proof of Proposition 2.

Proof. The proposition follows from the fact that if either player plays a Markov
strategy then their opponent’s best-response is a Markov strategy. Moreover, by
Theorem 2, τ̂ is a BR strategy for player 2 (recall Definition 3). Moreover, by
Theorem 1 (commuting the max and min operators) we observe that π̂ is a BR
strategy for player 1.

The proofs of the results in Sec. 9 are constructed in a similar fashion that in
(Bertsekas, 2008) (approximate dynamic programming). However, the analysis
incorporates some important departures due to the need to accommodate the
actions of two players that operate antagonistically.

We now prove the first of the two results of Sec. 9.
Proof of Theorem 5.

Proof. We firstly notice the construction of τ̂ given by

τ̂ = min{t|G(st) ≤ Q⋆}, (57)

is sensible since we observe that

min{t|G(st) ≤ J⋆}
=min{t|G(st) ≤ min{G(st), Q

⋆(st)}
=min{t|G(st) ≤ Q⋆}.

Result 1
Step 1 Our first step is to prove the following bound:∥∥FQ− FQ̄

∥∥ ≤ γ
∥∥Q− Q̄

∥∥ . (58)

Proof. ∥∥∥∥max
a∈A

Ra
s + γP min{G,Q} −

(
max
a∈A

Ra
s + γP min{G, Q̄}

)∥∥∥∥
= γ

∥∥P min{G,Q} − P min{G, Q̄}
∥∥

≤ γ
∥∥min {G,Q} −min

{
G, Q̄

}∥∥
≤ γ

∥∥Q− Q̄
∥∥ .

which is the required result.
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Step 2
Our next task is to prove that the quantity Q⋆ is a fixed point of F and hence
we can apply the operator F to achieve the approximation of the value.

Proof. Using the definition of T (c.f. (13) we find that:

J⋆ = TJ⋆ ⇐⇒ max
a∈A

Ra
s + γPJ⋆

= max
a∈A

Ra
s + γP min

{
max
a∈A

Ra
s + γPJ,G

}
⇐⇒
Q⋆ = max

a∈A
Ra

s + γP min {Q⋆, G}

⇐⇒
Q⋆ = FQ⋆.

Step 3
We now prove that the operator ΠF is a contraction on Q, that is the following
inequality holds: ∥∥ΠFQ−ΠFQ̄

∥∥ ≤ γ
∥∥Q− Q̄

∥∥ .
Proof. The proof follows straightforwardly by the properties of a projection map-
ping: ∥∥ΠFQ−ΠFQ̄

∥∥ ≤
∥∥FQ− FQ̄

∥∥ ≤ γ
∥∥Q− Q̄

∥∥ .
Step 4

∥Φr⋆ −Q⋆∥ ≤ 1√
1− γ2

∥ΠQ⋆ −Q⋆∥ . (59)

The result is proven using the orthogonality of the (orthogonal) projection and
by the Pythagorean theorem. Indeed, we have that:

Proof.

∥Φr⋆ −Q⋆∥2 =
∥∥Φr⋆ −ΠQ⋆∥2 + ∥ΠQ⋆ −Q⋆

∥∥2
= ∥ΠFΦr⋆ −ΠQ⋆∥2 + ∥ΠQ⋆ −Q⋆∥2

= ∥ΠFΦr⋆ −ΠQ⋆∥2 + ∥ΠQ⋆ −Q⋆∥2

≤ γ2 ∥Φr⋆ −Q⋆∥2 + ∥ΠQ⋆ −Q⋆∥2 .
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Hence, we find that

∥Φr⋆ −Q⋆∥ ≤ 1√
1− γ2

∥ΠQ⋆ −Q⋆∥ ,

which is the required result.

Result 2

E [J⋆[s]]− E
[
J τ̃ ,π̃[s]

]
≤ 2

[(1− γ)
√

1− γ2]
∥ΠQ⋆ −Q⋆∥. (60)

Proof. The proof by Jensen’s inequality, stationarity and the non-expansive
property of P . In particular, we have

E [J⋆[s]]− E
[
J τ̃ ,π̃[s]

]
= E [PJ⋆[s]]− E

[
PJ τ̃ ,π̃[s]

]
≤
∣∣E [PJ⋆[s]]− E

[
PJ τ̃ ,π̃[s]

]∣∣
≤ ∥PJ − PJ τ̃ ,π̃∥. (61)

Inserting the definitions of Q⋆ and Q̃ into (61) then gives:

E [J⋆[s]]− E
[
J τ̃ ,π̃[s]

]
≤ 1

γ
∥Q⋆ − Q̃∥. (62)

It remains therefore to place a bound on the term ∥Q⋆ − Q̃. We observe that by
the triangle inequality and the fixed point properties of F on Q and F̃ on Q̃ we
have

∥Q⋆ − Q̃∥ ≤ ∥Q⋆ − F (Φr⋆)∥+ ∥Q̃− F (Φr⋆)∥ (63)

≤ γ
{
∥Q⋆ − Φr⋆∥+ ∥Q̃− Φr⋆∥

}
(64)

≤ γ
{
2∥Q⋆ − Φr⋆∥+ ∥Q⋆ − Q̃∥

}
. (65)

So that

∥Q⋆ − Q̃∥ ≤ 2γ

1− γ
∥Q⋆ − Φr⋆∥. (66)

The result then follows after substituting the result of step 4 (59).

Let us now define the following quantity:

HQ(s) :=

{
G(s) if G(s) ≤ (Φr⋆)(s)

Q(s) otherwise,
(67)
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and

F̃Q := max
a∈A

Ra
s + γPHQ. (68)

Step 5 ∥∥∥F̃Q− F̃ Q̄
∥∥∥ ≤ γ

∥∥Q− Q̄
∥∥ (69)

Proof. ∥∥∥F̃Q− F̃ Q̄
∥∥∥ =

∥∥∥∥max
a∈A

Ra
s + γPHQ−

(
max
a∈A

Ra
s + γPHQ̄

)∥∥∥∥
= γ

∥∥PHQ− PHQ̄
∥∥

≤ γ
∥∥HQ−HQ̄

∥∥
= γ

∥∥min{G,Q} −min{G, Q̄}
∥∥

≤ γ
∥∥Q− Q̄

∥∥ .
We now prove that Q̃ = max

a∈A
Ra

s + γPJπ,τ̃ is a fixed point.

HQ̃ = H

(
max
a∈A

Ra
s + γPJπ,τ̃

)
=

{
G(s) if G(s) ≤ (Φr⋆)(s)

max
a∈A

Ra
s + γPJπ,τ̃ otherwise

= Jπ,τ̃

Let us now define the following quantity:

s(z, r) := ϕ(s)

(
max
a∈A

Ra
s + γmin {(Φr)(y), G(y)} − (Φr)(s)

)
.

Additionally, we define s̄ by the following:

s̄(z, r) := E [s(z0, r)] .

The components of s(z, r) are then given by:

sk ≡ E
[
ϕk(s0)

(
max
a∈A

Ra
s + γmin {(ϕr)(s0), G(s0)} − (ϕr)(s0)

)]
.
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We now observe that sk can be described in terms of an inner product. Indeed,
using the iterated law of expectations we have that

sk ≡ E
[
Φk(s0)

(
max
a∈A

Ra
s + γmin {(Φr)(s0), G(s0)} − (Φr)(s0)

)]
= E

[
Φk(s0)

(
max
a∈A

Ra
s + γE [min {(Φr)(s0), G(s0)} |s0]− (Φr)(s0)

)]
= E

[
Φk(s0)

(
max
a∈A

Ra
s + γP min {(Φr)(s0), G(s0)} − (Φr)(s0)

)]
= ⟨Φk, F (Φr)− F (Φr)⟩ .

Proof of Theorem 6

Step 5 enables us to use classic arguments for approximate dynamic program-
ming. In particular, following step 5, Theorem 6 follows directly from Theorem
2 in (Tsitsiklis & Van Roy, 1999) with only a minor adjustment in substituting
the max operator with min.
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